找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation: Analysis, Algorithms, Applications; Proceedings of the C T. Küpper,R. Seydel,H. Troger Conference proceedings 1987 Birkh?user

[復(fù)制鏈接]
樓主: Addendum
51#
發(fā)表于 2025-3-30 12:06:30 | 只看該作者
52#
發(fā)表于 2025-3-30 13:26:03 | 只看該作者
53#
發(fā)表于 2025-3-30 17:03:48 | 只看該作者
Bifurcation in Degenerate Directions,c rays are nondegenerate, a complete description of the zero set of G near z. is possible. However, there are applications where the above mentioned procedure gives no information about the local structure of G.{o}.
54#
發(fā)表于 2025-3-30 23:06:40 | 只看該作者
Some Remarks on the Morphology of Non-Unique Solutions in Nonlinear Elastostatics, a rigorous nonlocal qualitative and quantitative analysis of multivalued solutions. In this paper such a method called morphology analysis is briefly outlined and applied to a shallow arch and to a shallow shell problem.
55#
發(fā)表于 2025-3-31 01:18:58 | 只看該作者
H. H. Scheld,M. Deiwick,J. R?tker potential whose two local minima have exactly the same energy. The proper numerical treatment of such transitions requires techniques that are familiar from the handling of degenerate constraints in optimization algorithms.
56#
發(fā)表于 2025-3-31 05:26:59 | 只看該作者
Felix Unger,Hubert M?rl,Hans Armin Dieterichherence of the image, and introduces a parallel structure which can be used to gain a factor of 18 in the computation time. It also allows objects to be ray-traced which cannot be rendered by existing implementations of the algorithm.
57#
發(fā)表于 2025-3-31 12:19:08 | 只看該作者
58#
發(fā)表于 2025-3-31 14:31:18 | 只看該作者
An Application of Complex Bifurcation to a Problem in Computer Graphics,herence of the image, and introduces a parallel structure which can be used to gain a factor of 18 in the computation time. It also allows objects to be ray-traced which cannot be rendered by existing implementations of the algorithm.
59#
發(fā)表于 2025-3-31 17:44:00 | 只看該作者
60#
發(fā)表于 2025-3-31 23:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 阜平县| 阿鲁科尔沁旗| 洪雅县| 朝阳县| 娄底市| 鹰潭市| 陇南市| 平武县| 宁武县| 应城市| 克拉玛依市| 云安县| 米泉市| 临泉县| 筠连县| 白银市| 湖口县| 延川县| 阿鲁科尔沁旗| 台前县| 永昌县| 哈巴河县| 长海县| 鱼台县| 宁陕县| 介休市| 海宁市| 怀远县| 昌邑市| 云安县| 大竹县| 河北区| 清原| 北辰区| 正定县| 东台市| 烟台市| 依安县| 凌海市| 辽宁省|