找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation, Symmetry and Patterns; Jorge Buescu,Sofia B. S. D. Castro,Isabel Salgado Book 2003 Springer Basel AG 2003 Hot Spot.Mathemati

[復(fù)制鏈接]
樓主: hearing-aid
21#
發(fā)表于 2025-3-25 03:41:58 | 只看該作者
Patchwork Patterns: Dynamics on Unbounded Domains using a number of different topologies to examine the asymptotic behaviour of patterns. This highlights some problems that need to be understood in constructing a topological theory of dynamics for spatiotemporal patterns
22#
發(fā)表于 2025-3-25 07:52:39 | 只看該作者
23#
發(fā)表于 2025-3-25 14:12:55 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:57 | 只看該作者
Spatially Resonant Interactions in Annular Convectioninesq fluid. The stability of these convection patterns as well as the spatial interaction between them resulting in the formation of mixed modes are numerically investigated by considering the original nonlinear set of Navier-Stokes equations. A detailed picture of the nonlinear dynamics before tem
25#
發(fā)表于 2025-3-25 23:19:27 | 只看該作者
Hopf Bifurcations on Cubic Latticesattices. This is an equivariant bifurcation with spatial symmetry Γ = ..?.⊕?.. By extending the group to a larger, wreath product group we can use the method of . to find all solution branches guaranteed by group theory to be primary. This work is an extension of that done for the steady state FCC a
26#
發(fā)表于 2025-3-26 01:14:53 | 只看該作者
27#
發(fā)表于 2025-3-26 05:01:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:35:29 | 只看該作者
29#
發(fā)表于 2025-3-26 15:30:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:14 | 只看該作者
Rayleigh-Bénard Convection with Experimental Boundary Conditionslaw of cooling is formulated as a bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate as a bifurcation parameter since the temperature across the layer depends on the amplitude of convection and hence changes as convection evolves at fixed external parameter valu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满洲里市| 宝兴县| 双柏县| 宣城市| 运城市| 营口市| 龙陵县| 洛宁县| 宣恩县| 红桥区| 绍兴市| 依兰县| 宜宾县| 平利县| 平泉县| 抚松县| 庆元县| 独山县| 彰化市| 宿州市| 涟源市| 邻水| 吉水县| 蓝山县| 来宾市| 利川市| 庆城县| 措美县| 永城市| 武汉市| 二连浩特市| 南陵县| 黑山县| 台中县| 新田县| 海兴县| 厦门市| 西乡县| 赤峰市| 梁平县| 武山县|