找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory of Functional Differential Equations; Shangjiang Guo,Jianhong Wu Book 2013 Springer Science+Business Media New York 201

[復制鏈接]
查看: 28969|回復: 40
樓主
發(fā)表于 2025-3-21 19:33:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bifurcation Theory of Functional Differential Equations
影響因子2023Shangjiang Guo,Jianhong Wu
視頻videohttp://file.papertrans.cn/186/185531/185531.mp4
發(fā)行地址Authored by two leading active researchers.Self-contained and with most recent results on state-dependent delay equations and global bifurcations.Contains theory and some related applications.Includes
學科分類Applied Mathematical Sciences
圖書封面Titlebook: Bifurcation Theory of Functional Differential Equations;  Shangjiang Guo,Jianhong Wu Book 2013 Springer Science+Business Media New York 201
影響因子This book provides a crash course on various methods from the bifurcationtheory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. Thiswell illustrated book aims to be self containedso the readers will find in this book all relevant materials inbifurcation, dynamical systems with symmetry, functional differentialequations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Pindex Book 2013
The information of publication is updating

書目名稱Bifurcation Theory of Functional Differential Equations影響因子(影響力)




書目名稱Bifurcation Theory of Functional Differential Equations影響因子(影響力)學科排名




書目名稱Bifurcation Theory of Functional Differential Equations網(wǎng)絡(luò)公開度




書目名稱Bifurcation Theory of Functional Differential Equations網(wǎng)絡(luò)公開度學科排名




書目名稱Bifurcation Theory of Functional Differential Equations被引頻次




書目名稱Bifurcation Theory of Functional Differential Equations被引頻次學科排名




書目名稱Bifurcation Theory of Functional Differential Equations年度引用




書目名稱Bifurcation Theory of Functional Differential Equations年度引用學科排名




書目名稱Bifurcation Theory of Functional Differential Equations讀者反饋




書目名稱Bifurcation Theory of Functional Differential Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:50:35 | 只看該作者
Normal Form Theory,alysis. In the context of finite-dimensional ordinary differential equations (ODEs), this theory can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were the first to bring forth the theory in a more definite form.
5#
發(fā)表于 2025-3-22 09:20:43 | 只看該作者
Degree Theory,.?.→., where . is some (real) Banach space. In this type of nonlinear problem, we are interested in the solutions of . In most cases, it turns out that it is too much to ask to determine the zeros analytically and explicitly. Hence one looks for a more qualitative study of the zeros, such as the num
6#
發(fā)表于 2025-3-22 13:45:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:40:28 | 只看該作者
9#
發(fā)表于 2025-3-23 04:54:50 | 只看該作者
Elsa Carvalho,Jorge Cruz,Pedro Barahonaint to the (generalized) eigenspace of the neutrally stable eigenvalues. Since the local dynamic behavior . to the center manifold is relatively simple, the potentially complicated asymptotic behaviors of the full system are captured by the flows restricted to the center manifolds.
10#
發(fā)表于 2025-3-23 06:45:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大姚县| 江口县| 罗甸县| 浪卡子县| 宜兴市| 丹寨县| 政和县| 托克逊县| 万盛区| 大城县| 九龙城区| 平武县| 甘孜| 河北省| 同心县| 利津县| 吴旗县| 廊坊市| 乐清市| 揭阳市| 塘沽区| 宜城市| 东莞市| 谢通门县| 习水县| 精河县| 荃湾区| 孟村| 黄平县| 资讯 | 苏州市| 光山县| 城固县| 金堂县| 武清区| 宁南县| 沐川县| 内黄县| 光泽县| 唐海县| 米易县|