找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Control; Theory and Applicati Guanrong Chen,David J. Hill,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Bifurcati

[復(fù)制鏈接]
樓主: 領(lǐng)口
41#
發(fā)表于 2025-3-28 18:37:28 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:26 | 只看該作者
43#
發(fā)表于 2025-3-28 23:42:31 | 只看該作者
Global Control of Complex Power Systems, presence of bifurcations of various kinds is allowed for while using ideas from switching and optimal control. The approach will be illustrated by consideration of coordinated control for transient stability, voltage regulation and emergency voltage control of power systems.
44#
發(fā)表于 2025-3-29 05:18:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:16:17 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:50 | 只看該作者
47#
發(fā)表于 2025-3-29 18:02:43 | 只看該作者
0170-8643 furcation control.Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted
48#
發(fā)表于 2025-3-29 19:46:51 | 只看該作者
7.1.6 Radio line emission and absorption,ur controlling procedure allows asymptotically unstable chaotic attractors to become practically stable in such a way that transients on the unstable chaotic attractors or in their neighborhoods do not decay. Illustrative applications are presented.
49#
發(fā)表于 2025-3-30 03:10:21 | 只看該作者
50#
發(fā)表于 2025-3-30 04:50:23 | 只看該作者
Preserving Transients on Unstable Chaotic Attractors,ur controlling procedure allows asymptotically unstable chaotic attractors to become practically stable in such a way that transients on the unstable chaotic attractors or in their neighborhoods do not decay. Illustrative applications are presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 阿图什市| 长兴县| 哈密市| 东安县| 林西县| 靖远县| 嘉鱼县| 平远县| 临安市| 永州市| 秭归县| 武汉市| 壤塘县| 沿河| 瓮安县| 神木县| 黄大仙区| 思茅市| 丹棱县| 东兰县| 福建省| 潜山县| 五寨县| 贵定县| 龙江县| 拉萨市| 安岳县| 峡江县| 澳门| 乌什县| 渝北区| 丰镇市| 汕尾市| 波密县| 丽水市| 遂川县| 西峡县| 平江县| 桃江县| 永兴县|