找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Control; Theory and Applicati Guanrong Chen,David J. Hill,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Bifurcati

[復(fù)制鏈接]
樓主: 領(lǐng)口
41#
發(fā)表于 2025-3-28 18:37:28 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:26 | 只看該作者
43#
發(fā)表于 2025-3-28 23:42:31 | 只看該作者
Global Control of Complex Power Systems, presence of bifurcations of various kinds is allowed for while using ideas from switching and optimal control. The approach will be illustrated by consideration of coordinated control for transient stability, voltage regulation and emergency voltage control of power systems.
44#
發(fā)表于 2025-3-29 05:18:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:16:17 | 只看該作者
46#
發(fā)表于 2025-3-29 14:11:50 | 只看該作者
47#
發(fā)表于 2025-3-29 18:02:43 | 只看該作者
0170-8643 furcation control.Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted
48#
發(fā)表于 2025-3-29 19:46:51 | 只看該作者
7.1.6 Radio line emission and absorption,ur controlling procedure allows asymptotically unstable chaotic attractors to become practically stable in such a way that transients on the unstable chaotic attractors or in their neighborhoods do not decay. Illustrative applications are presented.
49#
發(fā)表于 2025-3-30 03:10:21 | 只看該作者
50#
發(fā)表于 2025-3-30 04:50:23 | 只看該作者
Preserving Transients on Unstable Chaotic Attractors,ur controlling procedure allows asymptotically unstable chaotic attractors to become practically stable in such a way that transients on the unstable chaotic attractors or in their neighborhoods do not decay. Illustrative applications are presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萍乡市| 周口市| 马山县| 收藏| 蛟河市| 湖北省| 长丰县| 葵青区| 股票| 鄯善县| 昌平区| 红河县| 福鼎市| 沙洋县| 安康市| 江永县| 红桥区| 平邑县| 云林县| 钦州市| 屏东市| 鸡东县| 灌云县| 滨州市| 景德镇市| 大埔区| 阿拉尔市| 平原县| 木兰县| 漠河县| 四平市| 闽清县| 武汉市| 南昌市| 科尔| 虞城县| 吴江市| 同心县| 深水埗区| 南涧| 乐清市|