找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bieberbach Groups and Flat Manifolds; Leonard S. Charlap Textbook 1986 Springer-Verlag New York Inc. 1986 Algebraic structure.Finite.Invar

[復(fù)制鏈接]
樓主: 哪能仁慈
11#
發(fā)表于 2025-3-23 09:44:53 | 只看該作者
https://doi.org/10.1007/978-94-007-7500-8n some wonderful results in riemannian geometry which, after a little initial work, come free with the algebraic results on Bieberbach groups. This procedure in which problems in one field, riemannian geometry, are converted to problems in another field, algebra, is very much in the spirit of modern
12#
發(fā)表于 2025-3-23 15:33:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:26:25 | 只看該作者
Interregionalism across the Atlantic SpaceWe start with an exercise (the first of many).
14#
發(fā)表于 2025-3-24 02:16:10 | 只看該作者
Barbara Zambelli,Stefano CiurliWe have defined Bieberbach subgroups of M. as the torsionfree, discrete, uniform ones. We have seen that such a subgroup . contains a free abelian subgroup . ? IR. which is normal, maximal abelian, and of finite index in .. We now define what it means for an abstract group to be Bieberbach.
15#
發(fā)表于 2025-3-24 03:49:41 | 只看該作者
James R. Smith,Olivia M. Pereira-SmithThis chapter, as its title indicates, concerns the group Aut(.) of automorphisms of a Bieberbach group .. A general reference is [20]. Much of this chapter is joint work with Han Sah and has never been published before.
16#
發(fā)表于 2025-3-24 09:22:09 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:58:36 | 只看該作者
Automorphisms,This chapter, as its title indicates, concerns the group Aut(.) of automorphisms of a Bieberbach group .. A general reference is [20]. Much of this chapter is joint work with Han Sah and has never been published before.
19#
發(fā)表于 2025-3-24 18:59:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚顺市| 柘荣县| 来宾市| 叶城县| 南投县| 漯河市| 银川市| 衢州市| 建始县| 恩施市| 桦南县| 突泉县| 光泽县| 廊坊市| 赤城县| 岗巴县| 时尚| 元阳县| 会泽县| 孟津县| 木兰县| 都匀市| 平度市| 广德县| 文化| 上思县| 凉山| 连云港市| 元阳县| 南木林县| 安达市| 固镇县| 曲松县| 鹤岗市| 松江区| 昌图县| 临沭县| 绵阳市| 腾冲县| 中西区| 五莲县|