找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Horizon of Computability; 16th Conference on C Marcella Anselmo,Gianluca Della Vedova,Arno Pauly Conference proceedings 2020 Spr

[復(fù)制鏈接]
樓主: 年邁
51#
發(fā)表于 2025-3-30 11:39:40 | 只看該作者
52#
發(fā)表于 2025-3-30 12:44:12 | 只看該作者
https://doi.org/10.1007/978-3-658-23432-4 to prove the following positive result: for a number of well-known representations (Beatty sequences, Dedekind cuts, General base expansions, Hurwitz characteristics, and Locators) conversion between the representations can be performed effectively and with good subrecursive bounds.
53#
發(fā)表于 2025-3-30 17:05:55 | 只看該作者
Mascha van de Kuit,Dirk de Natriset of polynomials realizing Hilbert’s Tenth Problem in the ring .; and the ., mapping the atomic diagram of an algebraic field . of characteristic 0 to the set of polynomials in . with roots in .. These lead to new open questions about enumeration operators in general.
54#
發(fā)表于 2025-3-30 21:49:35 | 只看該作者
55#
發(fā)表于 2025-3-31 04:28:19 | 只看該作者
A Note on Computable Embeddings for Ordinals and Their Reverses,gly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that although . is computably embeddable in ., the class . is . computably embeddable in . for any natural number ..
56#
發(fā)表于 2025-3-31 06:51:44 | 只看該作者
57#
發(fā)表于 2025-3-31 11:05:15 | 只看該作者
On the Complexity of Conversion Between Classic Real Number Representations,sequences), it is in general not possible to do so subrecursively: conversions in general need to perform unbounded search. This raises the question of categorizing the pairs of representations between which either subrecursive conversion is possible, or is not possible..The purpose of this paper is
58#
發(fā)表于 2025-3-31 16:29:24 | 只看該作者
59#
發(fā)表于 2025-3-31 17:51:28 | 只看該作者
60#
發(fā)表于 2025-4-1 01:25:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄陵县| 徐闻县| 青海省| 盐津县| 明水县| 旌德县| 南雄市| 乐昌市| 焦作市| 隆尧县| 壶关县| 绿春县| 鸡西市| 邯郸市| 巩留县| 宿迁市| 宜君县| 鄢陵县| 长白| 河南省| 大埔区| 四平市| 阿拉善右旗| 辰溪县| 紫金县| 铜山县| 湟中县| 思南县| 江油市| 连南| 福州市| 博白县| 手机| 新野县| 郯城县| 驻马店市| 伊川县| 哈尔滨市| 偏关县| 油尖旺区| 兴文县|