找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Horizon of Computability; 16th Conference on C Marcella Anselmo,Gianluca Della Vedova,Arno Pauly Conference proceedings 2020 Spr

[復(fù)制鏈接]
樓主: 年邁
51#
發(fā)表于 2025-3-30 11:39:40 | 只看該作者
52#
發(fā)表于 2025-3-30 12:44:12 | 只看該作者
https://doi.org/10.1007/978-3-658-23432-4 to prove the following positive result: for a number of well-known representations (Beatty sequences, Dedekind cuts, General base expansions, Hurwitz characteristics, and Locators) conversion between the representations can be performed effectively and with good subrecursive bounds.
53#
發(fā)表于 2025-3-30 17:05:55 | 只看該作者
Mascha van de Kuit,Dirk de Natriset of polynomials realizing Hilbert’s Tenth Problem in the ring .; and the ., mapping the atomic diagram of an algebraic field . of characteristic 0 to the set of polynomials in . with roots in .. These lead to new open questions about enumeration operators in general.
54#
發(fā)表于 2025-3-30 21:49:35 | 只看該作者
55#
發(fā)表于 2025-3-31 04:28:19 | 只看該作者
A Note on Computable Embeddings for Ordinals and Their Reverses,gly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that although . is computably embeddable in ., the class . is . computably embeddable in . for any natural number ..
56#
發(fā)表于 2025-3-31 06:51:44 | 只看該作者
57#
發(fā)表于 2025-3-31 11:05:15 | 只看該作者
On the Complexity of Conversion Between Classic Real Number Representations,sequences), it is in general not possible to do so subrecursively: conversions in general need to perform unbounded search. This raises the question of categorizing the pairs of representations between which either subrecursive conversion is possible, or is not possible..The purpose of this paper is
58#
發(fā)表于 2025-3-31 16:29:24 | 只看該作者
59#
發(fā)表于 2025-3-31 17:51:28 | 只看該作者
60#
發(fā)表于 2025-4-1 01:25:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迭部县| 平山县| 敦煌市| 远安县| 宜君县| 岳西县| 盐津县| 鹤峰县| 扶余县| 古交市| 玛纳斯县| 崇明县| 临桂县| 蚌埠市| 将乐县| 于田县| 广汉市| 金山区| 梁河县| 广宁县| 钦州市| 壶关县| 芜湖县| 宜君县| 东乌珠穆沁旗| 疏附县| 和平县| 广南县| 黔西| 黄冈市| 巩留县| 商城县| 祥云县| 精河县| 高青县| 盐池县| 四平市| 黄龙县| 博乐市| 高雄市| 鄂尔多斯市|