找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Quasicrystals; Les Houches, March 7 Fran?oise Axel,Denis Gratias Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 1995

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:24:29 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:25 | 只看該作者
24#
發(fā)表于 2025-3-25 16:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:25:31 | 只看該作者
The pentacrystalsntacrystal is any quasicrystal whose points can be written, relative to some basis {..,..., ..} of a real .-dimensional Euclidean space ?., with coefficients in ?[.], the quadratic extension of the rational number field ?. In these lecture notes all quasicrystals are pentacrystals even if they do.no
26#
發(fā)表于 2025-3-26 00:31:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:56:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:06:18 | 只看該作者
From Quasiperiodic to More Complex Systemsmer case the diffraction peaks are infinitely sharp for a perfect infinite crystal, in the latter there are no sharp peaks. The presence of some disorder does not eliminate sharp Bragg peaks as long as long-range order is preserved. Moreover, the sharp Bragg peaks lie on a lattice, the reciprocal la
29#
發(fā)表于 2025-3-26 13:13:09 | 只看該作者
Matching Rules and Quasiperiodicity: the Octagonal Tilingsthe main problems about quasicrystals is to understand the simple possibility of a non periodic long range order, since no two atoms have exactly the same environment up to infinity. One possible solution to this problem is to consider that the order stems from privileged local configurations and is
30#
發(fā)表于 2025-3-26 18:39:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武汉市| 长子县| 金湖县| 上蔡县| 肥城市| 田林县| 泸定县| 喀喇| 西峡县| 加查县| 潼关县| 达孜县| 达州市| 白山市| 巨野县| 普兰店市| 江门市| 新民市| 德保县| 依安县| 舟山市| 桦川县| 蚌埠市| 大冶市| 阳高县| 永川市| 和硕县| 平遥县| 吴堡县| 彭泽县| 通化县| 始兴县| 德昌县| 交口县| 罗定市| 南雄市| 买车| 方正县| 汝州市| 崇阳县| 定日县|