找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
11#
發(fā)表于 2025-3-23 10:59:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:12 | 只看該作者
Angular Resolutions: Around Vertices and Crossings,/total angular resolution of any straight-line drawing?of the graph. In this chapter, we review some of the results on angular resolution in the literature, and identify several open problems in the field.
13#
發(fā)表于 2025-3-23 20:45:14 | 只看該作者
Crossing Layout in Non-planar Graph Drawings,c graphs?as a way to represent crossings, the slanted layout of crossings in orthogonal graph layouts, and minimizing bundled rather than individual crossings. Further, we look at concepts such as confluent graph layout and partial edge drawings, which both have no visible crossings.
14#
發(fā)表于 2025-3-23 23:48:23 | 只看該作者
Simultaneous Embedding, of planarity. Afterward, we survey algorithmic approaches to the . problem, give an overview of recent results, and discuss their limitations. We close with a brief discussion of some recent variations of the simultaneous embedding?problem.
15#
發(fā)表于 2025-3-24 03:18:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:56 | 只看該作者
1-Planar Graphs,begin with formally defining 1-plane and 1-planar graphs and mainly focus on “maximal”, “maximum,” and “optimal” 1-planar graphs, which are relatively easy to treat. This chapter reviews some basic properties of these graphs.
18#
發(fā)表于 2025-3-24 17:57:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:35 | 只看該作者
and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental r978-981-15-6535-9978-981-15-6533-5
20#
發(fā)表于 2025-3-24 23:19:56 | 只看該作者
Edge Partitions and Visibility Representations of 1-planar Graphs, studied for planar graphs, they recently attracted attention also for 1-planar graphs, i.e., those graphs that can be drawn in the plane such that each edge is crossed at most once. After giving an overview of 1-planarity, we survey the main results concerning edge partitions and visibility represe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平山县| 大姚县| 富平县| 新干县| 淳化县| 白城市| 河曲县| 丰镇市| 高要市| 甘肃省| 揭阳市| 永丰县| 青田县| 青铜峡市| 托克托县| 托里县| 九寨沟县| 仁寿县| 兴国县| 玉田县| 息烽县| 迁安市| 宁阳县| 景宁| 万安县| 夹江县| 微博| 上饶县| 阿坝| 大石桥市| 曲麻莱县| 兴化市| 双柏县| 大理市| 西畴县| 集贤县| 高青县| 孟津县| 保山市| 元江| 澎湖县|