找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces; Ivan Singer Book 1970 Springer-Verlag Berlin Heidelberg 1970 A

[復(fù)制鏈接]
樓主: ED431
11#
發(fā)表于 2025-3-23 09:45:13 | 只看該作者
https://doi.org/10.1007/978-3-319-12652-4such elements . do not exist, throughout the sequel by “l(fā)inear subspace” .?. we shall understand “proper linear subspace . which is not dense in .”, that is, we shall assume, without special mention, that ..
12#
發(fā)表于 2025-3-23 17:48:03 | 只看該作者
Mohammad Belayet Hossain,P. W. C. Prasad“deviation” of the polynomial ..(.) from the function .(.) on the segment [.] be the least possible among the deviations of all algebraic polynomials . of degree ?.—1, or, in other words, the problem of . of the function .(.) by algebraic polynomials .(.) of degree ?.—1.
13#
發(fā)表于 2025-3-23 20:53:07 | 只看該作者
Cloud IT as a Base for Virtual Internship., and every element . ∈ . can be written, uniquely, in the form.where α.,..., α. are scalars (real or complex, according to the space .); the linear combinations (1.1) are also called . (in ..,..., ..).
14#
發(fā)表于 2025-3-24 01:25:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:37:51 | 只看該作者
16#
發(fā)表于 2025-3-24 07:42:58 | 只看該作者
17#
發(fā)表于 2025-3-24 12:12:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:18:02 | 只看該作者
Introduction,ury ago [32], the problem of finding, for a real continuous function .(.) on a segment [a, 6], an algebraic polynomial . of degree ?.—1 such that the “deviation” of the polynomial ..(.) from the function .(.) on the segment [.] be the least possible among the deviations of all algebraic polynomials
19#
發(fā)表于 2025-3-24 19:57:09 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
楚雄市| 安乡县| 衡阳县| 新源县| 会同县| 隆林| 如东县| 安顺市| 东乡族自治县| 乐亭县| 望江县| 安远县| 浦城县| 大丰市| 广灵县| 威信县| 南平市| 介休市| 安陆市| 浦东新区| 奈曼旗| 吉隆县| 赤壁市| 昌宁县| 迁安市| 珲春市| 新和县| 合山市| 台中市| 横峰县| 平江县| 浮梁县| 南华县| 杭州市| 抚顺县| 大同县| 滦南县| 洛阳市| 准格尔旗| 安岳县| 蓝山县|