找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Berkovich Spaces and Applications; Antoine Ducros,Charles Favre,Johannes Nicaise Book 2015 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: 孵化
21#
發(fā)表于 2025-3-25 07:03:57 | 只看該作者
Emil Faure,Olena Danchenko,Grygoriy Zaspaer a field are coherent. The proof consists in endowing the ground field with the trivial absolute value and using the corresponding finiteness theorem for Berkovich spaces (after having proven at hand a suitable GAGA-principle). The latter theorem comes itself from a theorem of Kiehl in rigid geome
22#
發(fā)表于 2025-3-25 08:59:30 | 只看該作者
23#
發(fā)表于 2025-3-25 13:47:20 | 只看該作者
0075-8434 of the theory.Gives an exposition of the striking applicati.We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analyt
24#
發(fā)表于 2025-3-25 18:02:26 | 只看該作者
Cohomological Finiteness of Proper Morphisms in Algebraic Geometry: A Purely Transcendental Proof, Wtry, whose proof is based upon the theory of completely continuous maps between .-adic Banach spaces (in the spirit of Cartan and Serre’s proof of the finiteness of coherent cohomology on a compact complex analytic space).
25#
發(fā)表于 2025-3-25 22:46:41 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:49 | 只看該作者
étale Cohomology of Schemes and Analytic Spaceseory, satisfying the same fundamental properties as the singular cohomology of complex varieties, which was needed for proving the Weil conjectures. For other deep arithmetic reasons (related to Langlands program) it appeared later that it should also be worthwhile developing such a theory in the .-
27#
發(fā)表于 2025-3-26 05:07:07 | 只看該作者
Cohomological Finiteness of Proper Morphisms in Algebraic Geometry: A Purely Transcendental Proof, Wer a field are coherent. The proof consists in endowing the ground field with the trivial absolute value and using the corresponding finiteness theorem for Berkovich spaces (after having proven at hand a suitable GAGA-principle). The latter theorem comes itself from a theorem of Kiehl in rigid geome
28#
發(fā)表于 2025-3-26 09:26:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:39 | 只看該作者
Individualityh of Hobbes’s theory. And Hobbes’s political framework is conceptually preeminent in early modern contractarianism, according to which law and politics are deeply connected to some form of indi-vidualism. Spinoza embraces this connection and makes individuality one of his natural law theory’s cornerstones that will be revolutionized.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍城县| 平原县| 湖北省| 米泉市| 安康市| 化隆| 通化市| 汉源县| 泾源县| 安溪县| 达日县| 宝应县| 麟游县| 兴安盟| 会理县| 侯马市| 罗江县| 阳城县| 昌乐县| 尼木县| 绥芬河市| 开阳县| 秦安县| 彭州市| 沙雅县| 富源县| 清涧县| 侯马市| 陇南市| 乌苏市| 和平县| 宜都市| 江北区| 新邵县| 江陵县| 东源县| 石城县| 高青县| 赤峰市| 沽源县| 乐至县|