找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bericht über eine Theorie der Str?mung um Rotationsk?rper ohne Anstellung bei Machzahl Eins; F. Keune Book 1955 Springer Fachmedien Wiesba

[復(fù)制鏈接]
樓主: hector
11#
發(fā)表于 2025-3-23 10:24:20 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:01 | 只看該作者
Bericht über eine Theorie der Str?mung um Rotationsk?rper ohne Anstellung bei Machzahl Eins
13#
發(fā)表于 2025-3-23 21:48:34 | 只看該作者
14#
發(fā)表于 2025-3-23 23:12:25 | 只看該作者
15#
發(fā)表于 2025-3-24 04:24:46 | 只看該作者
,Die einfachste Theorie für Schalln?he bzw. bei Schall,zwischen M., und . (c* ist die kritische Geschwindigkeit) gewonnen, und es wurden reduzierte Werte u,v für die St?rgeschwindigkeiten U,V und den Abstand . vom K?rper eingeführt. Der reduzierte Abstand. geht mit . in die bekannte Transformation nach der Prandtl’schen Regel über (. ist das bekannte Ve
16#
發(fā)表于 2025-3-24 08:14:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:45:27 | 只看該作者
Biologische Netzwerke als Petri-Netze,ihe bekannter Methoden zur angen?herten und auch exakten Berechnung der Str?mung und des Widerstandes. Auf diese beiden Str?mungsarten soll heute nur insoweit eingegangen werden, als es zu Vergleichen und zu einem überblick über das Gesamtgebiet erforderlich ist.
18#
發(fā)表于 2025-3-24 17:45:26 | 只看該作者
https://doi.org/10.1007/978-3-322-84573-3nd . vom K?rper eingeführt. Der reduzierte Abstand. geht mit . in die bekannte Transformation nach der Prandtl’schen Regel über (. ist das bekannte Verh?ltnis der spezifischen W?rmen, τ das Dickenverh?ltnis).
19#
發(fā)表于 2025-3-24 21:08:24 | 只看該作者
https://doi.org/10.1007/978-3-322-92382-0hwindigkeit am K?rper ersetzt. In der vorliegenden ersten N?herungstheorie ist diese ?nderung konstant gesetzt. Dies führt die .dynamische Gleichung bei Schall in eine parabolische Differentialgleichung über mit dem Glied -u/a..
20#
發(fā)表于 2025-3-25 03:06:47 | 只看該作者
Einleitung,ihe bekannter Methoden zur angen?herten und auch exakten Berechnung der Str?mung und des Widerstandes. Auf diese beiden Str?mungsarten soll heute nur insoweit eingegangen werden, als es zu Vergleichen und zu einem überblick über das Gesamtgebiet erforderlich ist.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满洲里市| 满城县| 神农架林区| 深圳市| 安图县| 赣州市| 福海县| 简阳市| 平凉市| 德惠市| 德清县| 新泰市| 金华市| 樟树市| 唐河县| 广州市| 松原市| 芮城县| 肇源县| 丰台区| 甘洛县| 沂源县| 琼海市| 淄博市| 五家渠市| 中西区| 灵山县| 东辽县| 南江县| 阜新| 吴江市| 大姚县| 扎兰屯市| 资溪县| 博白县| 弥渡县| 丽江市| 本溪市| 象山县| 庆云县| 那坡县|