找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bergman’s Linear Integral Operator Method in the Theory of Compressible Fluid Flow; M. Z. Krzywoblocki Book 1960 Springer-Verlag Wien 1960

[復(fù)制鏈接]
樓主: metabolism
31#
發(fā)表于 2025-3-26 21:45:11 | 只看該作者
List of Tables,Some tables will be given below. No attempt will be made to include long tables of various functions and coefficients which may be found in special papers by Bergman, as listed in Part VIII.
32#
發(fā)表于 2025-3-27 03:04:59 | 只看該作者
33#
發(fā)表于 2025-3-27 08:38:08 | 只看該作者
Errata in Previous Papers,A few errors and misprints were found here and there in previous papers. They will be corrected below, the numbers in brackets referring to the list of references at the end of the book.
34#
發(fā)表于 2025-3-27 12:17:06 | 只看該作者
35#
發(fā)表于 2025-3-27 15:35:21 | 只看該作者
36#
發(fā)表于 2025-3-27 20:04:02 | 只看該作者
37#
發(fā)表于 2025-3-27 23:51:56 | 只看該作者
General Remarks,). But for a mathematically advanced reader, it is obvious that the method presents some further possibilities which may be realized in the future. In the present section we shall briefly present a few of them.
38#
發(fā)表于 2025-3-28 05:19:12 | 只看該作者
39#
發(fā)表于 2025-3-28 08:38:26 | 只看該作者
Transonic Flow, regions. The complexity of the problem is the origin of several methods of solutions. Below, we shall try to outline and discuss a few of them. In the second half of this part a more general discussion of the problem of transonic flow will be presented without deriving the proofs which a reader who
40#
發(fā)表于 2025-3-28 11:11:11 | 只看該作者
Axially Symmetric Flow,ow past bodies of revolution. Let ., ., χ denote the cylindrical coordinates with the .-axis coincident with the axis of symmetry of the flow. The velocity vector then no longer depends on the rotation angle χ, but rather entirely on . and ., and always lies in a meridian plane (plane through the .-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅河口市| 滦南县| 苍南县| 延吉市| 靖江市| 西峡县| 邳州市| 新田县| 马山县| 虞城县| 黑龙江省| 霍州市| 桐城市| 新宾| 东城区| 邹平县| 沁水县| 松桃| 临桂县| 时尚| 新津县| 上饶市| 黔西| 宁波市| 会宁县| 平原县| 勐海县| 邯郸市| 丰县| 绥芬河市| 治多县| 开化县| 鱼台县| 南澳县| 镇远县| 湟中县| 二连浩特市| 新巴尔虎右旗| 双牌县| 光山县| 义乌市|