找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Benchmarking, Measuring, and Optimizing; Second BenchCouncil Wanling Gao,Jianfeng Zhan,Dan Stanzione Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: Randomized
21#
發(fā)表于 2025-3-25 04:49:22 | 只看該作者
Conference proceedings 2020papers are organized in topical sections named: Best Paper Session; AI Challenges on Cambircon using AIBenc; AI Challenges on RISC-V using AIBench; AI Challenges on X86 using AIBench; AI Challenges on 3D Face Recognition using AIBench; Benchmark; AI and Edge; Big Data; Datacenter; Performance Analysis; Scientific Computing..
22#
發(fā)表于 2025-3-25 08:18:01 | 只看該作者
23#
發(fā)表于 2025-3-25 15:19:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:19:19 | 只看該作者
Infectious Diseases and Arthropodspose RVTensor that a light-weight neural network inference framework based on the RISC-V architecture. RVTensor is based on the SERVE.r platform and is optimized for resource-poor scenarios. Our experiments demonstrate that the accuracy of RVTensor and the Keras is the same.
25#
發(fā)表于 2025-3-25 20:01:08 | 只看該作者
26#
發(fā)表于 2025-3-26 00:49:40 | 只看該作者
Infectious Diseases and Arthropodsamming models, CUDA?and OpenACC. We present the influence of the programming model on the performance and scaling characteristics. We also leverage the insights of the Roofline Scaling Trajectory analysis to tune some of the NAS Parallel Benchmarks, achieving up?to 2. speedup.
27#
發(fā)表于 2025-3-26 06:37:27 | 只看該作者
Infectious Diseases and Nanomedicine I to enabling deep learning inference on RISC-V. Experimental results show that in our work, there is a great gap between the performance of deep learning inference on RISC-V and that on x86; thus compared with direct compilation on RISC-V, cross-compilation on x86 is a better option to significantly improve development efficiency.
28#
發(fā)表于 2025-3-26 11:03:57 | 只看該作者
29#
發(fā)表于 2025-3-26 16:43:30 | 只看該作者
Performance Analysis of GPU Programming Models Using the Roofline Scaling Trajectoriesamming models, CUDA?and OpenACC. We present the influence of the programming model on the performance and scaling characteristics. We also leverage the insights of the Roofline Scaling Trajectory analysis to tune some of the NAS Parallel Benchmarks, achieving up?to 2. speedup.
30#
發(fā)表于 2025-3-26 19:39:55 | 只看該作者
AIRV: Enabling Deep Learning Inference on RISC-V to enabling deep learning inference on RISC-V. Experimental results show that in our work, there is a great gap between the performance of deep learning inference on RISC-V and that on x86; thus compared with direct compilation on RISC-V, cross-compilation on x86 is a better option to significantly improve development efficiency.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 兰州市| 兰考县| 航空| 南雄市| 沂水县| 炉霍县| 杭州市| 出国| 鹿泉市| 吉安县| 来凤县| 油尖旺区| 吴江市| 通辽市| 朝阳县| 司法| 乌审旗| 鹤庆县| 茶陵县| 台州市| 德令哈市| 嘉黎县| 朝阳市| 余庆县| 嘉黎县| 大港区| 滨州市| 西青区| 南平市| 平塘县| 惠安县| 油尖旺区| 达拉特旗| 西畴县| 三都| 汾西县| 荣成市| 兴义市| 安化县| 武功县|