找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Revision in Non-Classical Logics; Márcio Moretto Ribeiro Book 2013 The Author(s) 2013 AGM Theory.Belief Revision.Knowledge Represen

[復制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 12:29:51 | 只看該作者
12#
發(fā)表于 2025-3-23 15:16:21 | 只看該作者
Robert Obermaier,Victoria Kirscha logic as a pair . such that . is the .of the logic and . is the .. that gives the consequences of a set of sentences..We are particularly interested in Tarskian logics and certain properties that they may satisfy e.g., compactness, decomposability, distribuitivity, etc. In this chapter, Tarskian l
13#
發(fā)表于 2025-3-23 18:43:32 | 只看該作者
14#
發(fā)表于 2025-3-24 01:41:59 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:07 | 只看該作者
https://doi.org/10.1007/978-3-658-16527-7 In order to avoid the undesirable consequences of recovery, Hansson proposes to exchange it by a postulate called .. However, in classical logics relevance and recovery are equivalent. In this chapter, we defend the use of relevance instead of recovery in non-classical logics for mainly three reaso
16#
發(fā)表于 2025-3-24 07:35:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:17 | 只看該作者
Industrie 4.0 bei Hidden Championsnt algorithms for computing these sets. The similarities between the algorithms suggests that they are deeply related. We present this relation formally and show examples where computing the remainder set is much easier than computing the kernel and examples where the opposite is the case.
19#
發(fā)表于 2025-3-24 20:11:34 | 只看該作者
Industrie 4.0 bei Hidden Championsf logics that fail to satisfy these assumptions, e.g., most DLs, Horn logic, and intuitionistic logic. After that we presented ways of adapting classical belief revision in order for it to be compliant with a wider class of logics. In the case of belief set contraction we showed that this can be ach
20#
發(fā)表于 2025-3-24 23:24:04 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
婺源县| 德钦县| 万盛区| 邵东县| 磴口县| 二连浩特市| 凭祥市| 新和县| 保康县| 镶黄旗| 西乌| 册亨县| 乌兰县| 新田县| 平邑县| 绥棱县| 中牟县| 黄浦区| 合阳县| 南宁市| 太仓市| 平罗县| 沐川县| 丹阳市| 丰原市| 麦盖提县| 贵阳市| 旌德县| 大名县| 澄迈县| 鄂托克前旗| 资兴市| 大埔区| 即墨市| 修文县| 墨江| 赤城县| 桐柏县| 宝鸡市| 张家口市| 孝义市|