找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; Third International Fabio Cuzzolin Conference proceedings 2014 Springer International Publishin

[復(fù)制鏈接]
樓主: culinary
31#
發(fā)表于 2025-3-26 21:05:38 | 只看該作者
32#
發(fā)表于 2025-3-27 01:10:42 | 只看該作者
978-3-319-11190-2Springer International Publishing Switzerland 2014
33#
發(fā)表于 2025-3-27 08:45:33 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:36 | 只看該作者
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
The Choice of Generalized Dempster-Shafer Rules for Aggregating Belief Functions Based on Imprecisiotions. The approach is based on measuring various types of uncertainty in information and we use for this linear imprecision indices. Some results concerning properties of such rules are also presented.
36#
發(fā)表于 2025-3-27 18:13:53 | 只看該作者
General Schemes of Combining Rules and the Quality Characteristics of Combiningicient conditions of change of ignorance when evidences are combined with the help of various rules. It is shown that combining rules can be regarded as pessimistic or optimistic depending on the sign of the change of ignorance after applying.
37#
發(fā)表于 2025-3-27 22:46:54 | 只看該作者
An Optimal Unified Combination Rulevidence. It is optimal in the sense that the resulting combined .-function has the least dissimilarity with the individual .-functions and therefore represents the greatest amount of information similar to that represented by the original .-functions. Examples are provided to illustrate the proposed
38#
發(fā)表于 2025-3-28 02:14:27 | 只看該作者
Evidential Logistic Regression for Binary SVM Classifier Calibrationd when dealing with high uncertainty. Many classification approaches such as .-nearest neighbors, neural network or decision trees have been formulated with belief functions. In this paper, we propose an evidential calibration method that transforms the output of a classifier into a belief function.
39#
發(fā)表于 2025-3-28 06:46:17 | 只看該作者
40#
發(fā)表于 2025-3-28 14:14:10 | 只看該作者
Belief Hierarchical Clusteringals with a new approach to cluster uncertain data by using a hierarchical clustering defined within the belief function framework. The main objective of the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枝江市| 庆元县| 兰溪市| 延寿县| 定襄县| 乌鲁木齐市| 新巴尔虎左旗| 天津市| 崇义县| 白河县| 合江县| 孟津县| 前郭尔| 屏东市| 莎车县| 花莲市| 武胜县| 礼泉县| 赤水市| 祁阳县| 尼木县| 贵南县| 平乐县| 济南市| 全椒县| 邯郸市| 象州县| 定陶县| 松阳县| 河池市| 延寿县| 团风县| 浮山县| 龙山县| 昌图县| 绥芬河市| 东山县| 普安县| 长武县| 柞水县| 谢通门县|