找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; Third International Fabio Cuzzolin Conference proceedings 2014 Springer International Publishin

[復(fù)制鏈接]
樓主: culinary
31#
發(fā)表于 2025-3-26 21:05:38 | 只看該作者
32#
發(fā)表于 2025-3-27 01:10:42 | 只看該作者
978-3-319-11190-2Springer International Publishing Switzerland 2014
33#
發(fā)表于 2025-3-27 08:45:33 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:36 | 只看該作者
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
The Choice of Generalized Dempster-Shafer Rules for Aggregating Belief Functions Based on Imprecisiotions. The approach is based on measuring various types of uncertainty in information and we use for this linear imprecision indices. Some results concerning properties of such rules are also presented.
36#
發(fā)表于 2025-3-27 18:13:53 | 只看該作者
General Schemes of Combining Rules and the Quality Characteristics of Combiningicient conditions of change of ignorance when evidences are combined with the help of various rules. It is shown that combining rules can be regarded as pessimistic or optimistic depending on the sign of the change of ignorance after applying.
37#
發(fā)表于 2025-3-27 22:46:54 | 只看該作者
An Optimal Unified Combination Rulevidence. It is optimal in the sense that the resulting combined .-function has the least dissimilarity with the individual .-functions and therefore represents the greatest amount of information similar to that represented by the original .-functions. Examples are provided to illustrate the proposed
38#
發(fā)表于 2025-3-28 02:14:27 | 只看該作者
Evidential Logistic Regression for Binary SVM Classifier Calibrationd when dealing with high uncertainty. Many classification approaches such as .-nearest neighbors, neural network or decision trees have been formulated with belief functions. In this paper, we propose an evidential calibration method that transforms the output of a classifier into a belief function.
39#
發(fā)表于 2025-3-28 06:46:17 | 只看該作者
40#
發(fā)表于 2025-3-28 14:14:10 | 只看該作者
Belief Hierarchical Clusteringals with a new approach to cluster uncertain data by using a hierarchical clustering defined within the belief function framework. The main objective of the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 涪陵区| 灵璧县| 襄樊市| 布拖县| 罗城| 丹棱县| 虹口区| 大化| 大荔县| 舒城县| 项城市| 塔河县| 巫溪县| 同仁县| 澄迈县| 香河县| 沅江市| 西宁市| 佛坪县| 海晏县| 榕江县| 高安市| 鄂托克旗| 彰武县| 尚义县| 介休市| 同德县| 临海市| 青川县| 宝山区| 神农架林区| 莎车县| 大石桥市| 博罗县| 丰台区| 林西县| 崇文区| 嘉荫县| 会东县| 鲁甸县|