找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning MLOps with MLFlow; Deploy Models in AWS Sridhar Alla,Suman Kalyan Adari Book 2021 Sridhar Alla, Suman Kalyan Adari 2021 Machine L

[復(fù)制鏈接]
查看: 13841|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:41:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Beginning MLOps with MLFlow
期刊簡稱Deploy Models in AWS
影響因子2023Sridhar Alla,Suman Kalyan Adari
視頻videohttp://file.papertrans.cn/183/182420/182420.mp4
發(fā)行地址Covers the concepts behind MLOps that you need to know to operationalize your machine learning solutions for practical use.Shows you how to deploy models with AWS SageMaker, Google Cloud, and Microsof
圖書封面Titlebook: Beginning MLOps with MLFlow; Deploy Models in AWS Sridhar Alla,Suman Kalyan Adari Book 2021 Sridhar Alla, Suman Kalyan Adari 2021 Machine L
影響因子Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. ?This book guides you through the process of data analysis, model construction, and training..The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks.. ..What You Will Learn..Perform basic data analysis and construct models in
Pindex Book 2021
The information of publication is updating

書目名稱Beginning MLOps with MLFlow影響因子(影響力)




書目名稱Beginning MLOps with MLFlow影響因子(影響力)學(xué)科排名




書目名稱Beginning MLOps with MLFlow網(wǎng)絡(luò)公開度




書目名稱Beginning MLOps with MLFlow網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beginning MLOps with MLFlow被引頻次




書目名稱Beginning MLOps with MLFlow被引頻次學(xué)科排名




書目名稱Beginning MLOps with MLFlow年度引用




書目名稱Beginning MLOps with MLFlow年度引用學(xué)科排名




書目名稱Beginning MLOps with MLFlow讀者反饋




書目名稱Beginning MLOps with MLFlow讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:23:59 | 只看該作者
Introduction to MLFlow, will cover how you can integrate MLFlow with scikit-learn, TensorFlow 2.0+/Keras, PyTorch, and PySpark. We will go over experiment creation; metric, parameter, and artifact logging; model logging; and how you can deploy models on a local server and query them for predictions.
地板
發(fā)表于 2025-3-22 06:48:02 | 只看該作者
5#
發(fā)表于 2025-3-22 11:44:24 | 只看該作者
6#
發(fā)表于 2025-3-22 14:55:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:32:04 | 只看該作者
Manar Alohaly,Hassan Takabi,Eduardo BlancoIn this chapter, we will cover how you can operationalize your MLFlow models using AWS SageMaker. We will cover how you can upload your runs to S3 storage, how you can build and push an MLFlow Docker container image to AWS, and how you can deploy your model, query it, update the model once it is deployed, and remove a deployed model.
8#
發(fā)表于 2025-3-22 21:58:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:39:17 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:43 | 只看該作者
Getting Started: Data Analysis,In this chapter, we will go over the premise of the problem we are attempting to solve with the machine learning solution we want to operationalize. We will also begin data analysis and feature engineering of our data set.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁陕县| 方正县| 建水县| 谷城县| 老河口市| 平度市| 渭源县| 江北区| 屏边| 中江县| 玉田县| 长沙县| 绥德县| 鄯善县| 西华县| 通榆县| 邵阳县| 海丰县| 泸州市| 卫辉市| 壤塘县| 翁源县| 新乐市| 台南市| 康保县| 册亨县| 南漳县| 集安市| 保定市| 达日县| 博湖县| 登封市| 吉木萨尔县| 盐山县| 凌云县| 宜兰市| 化德县| 高密市| 中方县| 弥勒县| 天峻县|