找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Data Science in R; Data Analysis, Visua Thomas Mailund Book 20171st edition Thomas Mailund 2017 R.programming.statistics.data sci

[復(fù)制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 14:40:06 | 只看該作者
ng.?.What You Will Learn.Perform data science and analytics using statistics and the R programming language.Visualize and explore data, including working with large data sets found in big data.Build an R package.Test and check your code.Practice version control.Profile and optimize your code.Who This Book Is For.Those wi978-1-4842-2671-1
42#
發(fā)表于 2025-3-28 22:17:23 | 只看該作者
43#
發(fā)表于 2025-3-29 01:30:18 | 只看該作者
cessful lecture seriesDiscover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software package
44#
發(fā)表于 2025-3-29 04:06:27 | 只看該作者
45#
發(fā)表于 2025-3-29 07:46:29 | 只看該作者
Information Processing in The Nervous System to load the data into R and then figuring out how to transform it into a shape you can readily analyze. The code in this chapter, and all the following, assumes that the packages magrittr and ggplot2 have been loaded (just to avoid explicitly doing so in each example).
46#
發(fā)表于 2025-3-29 11:57:46 | 只看該作者
47#
發(fā)表于 2025-3-29 19:16:16 | 只看該作者
Single Cells versus Neuronal Assembliesntrol systems, Subversion and git. Of these, git is the most widely used, and although these things are very subjective of course, I think that it is also the better system. It is certainly the system we use here.
48#
發(fā)表于 2025-3-29 21:16:57 | 只看該作者
49#
發(fā)表于 2025-3-30 01:42:06 | 只看該作者
50#
發(fā)表于 2025-3-30 04:48:12 | 只看該作者
Unsupervised Learning,his. Sometimes unknown structures can tell us more about the data. Sometimes we want to explicitly avoid an unknown structure (if we have datasets that are supposed to be similar, we don’t want to discover later that there are systematic differences). Whatever the reason, unsupervised learning concerns finding unknown structures in data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘南县| 鄂托克旗| 连江县| 泰宁县| 新津县| 望谟县| 崇左市| 阳高县| 大丰市| 龙胜| 邵东县| 德保县| 新化县| 海宁市| 响水县| 福泉市| 祥云县| 娄底市| 凤山县| 塔河县| 彝良县| 穆棱市| 卢湾区| 东台市| 佛冈县| 尤溪县| 苍山县| 静宁县| 武夷山市| 西安市| 余姚市| 深圳市| 台北市| 永安市| 石门县| 崇义县| 虎林市| 锡林郭勒盟| 望城县| 老河口市| 临朐县|