找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Data Science in R; Data Analysis, Visua Thomas Mailund Book 20171st edition Thomas Mailund 2017 R.programming.statistics.data sci

[復(fù)制鏈接]
樓主: Encounter
31#
發(fā)表于 2025-3-26 22:00:14 | 只看該作者
32#
發(fā)表于 2025-3-27 03:18:41 | 只看該作者
33#
發(fā)表于 2025-3-27 08:32:57 | 只看該作者
Reproducible Analysis,ses, written in various scripts, perhaps saving some intermediate results along the way or maybe always working on the raw data. You create some plots or tables of relevant summaries of the data, and then you go and write a report about the results in a text editor or word processor. It is the typic
34#
發(fā)表于 2025-3-27 10:36:47 | 只看該作者
Data Manipulation,e statistical models or machine learning algorithms we want to analyze them with. The first stages of data analysis are almost always figuring out how to load the data into R and then figuring out how to transform it into a shape you can readily analyze. The code in this chapter, and all the followi
35#
發(fā)表于 2025-3-27 14:08:05 | 只看該作者
Unsupervised Learning,king prediction models. Sometimes we are just trying to find out what structure is actually in the data we analyze. There can be several reasons for this. Sometimes unknown structures can tell us more about the data. Sometimes we want to explicitly avoid an unknown structure (if we have datasets tha
36#
發(fā)表于 2025-3-27 18:06:50 | 只看該作者
37#
發(fā)表于 2025-3-27 22:14:27 | 只看該作者
Advanced R Programming,p of the quick introduction you got in the last chapter. Except, perhaps, for the functional programming toward the end, we will not cover anything that is conceptually more complex that we did in the previous chapter. It is just a few more technical details we will dig into.
38#
發(fā)表于 2025-3-28 03:15:26 | 只看該作者
Testing and Package Checking,th a couple of chosen parameters, but to build robust software you need to approach testing more rigorously. And to prevent bugs from creeping into your code over time, you should test often. Ideally, you should check all your code anytime you make any changes to it.
39#
發(fā)表于 2025-3-28 10:19:49 | 只看該作者
40#
發(fā)表于 2025-3-28 10:37:00 | 只看該作者
Book 20171st editionrn.Perform data science and analytics using statistics and the R programming language.Visualize and explore data, including working with large data sets found in big data.Build an R package.Test and check your code.Practice version control.Profile and optimize your code.Who This Book Is For.Those wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 开封县| 藁城市| 台南市| 东丽区| 沁阳市| 嘉善县| 云龙县| 镇江市| 阿坝| 敦化市| 六盘水市| 天镇县| 桦川县| 漠河县| 东光县| 巩留县| 湟源县| 荔波县| 桓台县| 余姚市| 永胜县| 镇江市| 荔波县| 清水河县| 天祝| 清新县| 朔州市| 奇台县| 上蔡县| 大理市| 汉阴县| 绍兴市| 陆丰市| 洛南县| 霸州市| 崇礼县| 廊坊市| 松桃| 藁城市| 久治县|