找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; Implement Anomaly De Suman Kalyan Adari,Sridhar Alla Book 2024Latest edition

[復(fù)制鏈接]
樓主: Jefferson
31#
發(fā)表于 2025-3-26 22:24:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:00:57 | 只看該作者
Transformers,In this chapter, you will learn about transformer networks and how you can implement anomaly detection using a transformer.
33#
發(fā)表于 2025-3-27 05:51:22 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:58 | 只看該作者
35#
發(fā)表于 2025-3-27 15:40:40 | 只看該作者
https://doi.org/10.1007/978-981-33-6033-4every modeling task you may come across, and they extend into deep learning modeling as well. This is a high-level theoretical introduction to machine learning, since the practical material and implementation of these machine learning principles will be covered in the subsequent chapters.
36#
發(fā)表于 2025-3-27 21:22:31 | 只看該作者
Fei Song,Qiang Chen,Tao Lei,Zhenming Peng. These concepts will apply to the rest of the book and beyond. In the process, you will also implement a simple neural network model in both TensorFlow/Keras and PyTorch to perform supervised anomaly detection and serve as a gateway into learning how to model in these frameworks.
37#
發(fā)表于 2025-3-28 01:55:15 | 只看該作者
Bowen Zhang,Shuyi Li,Zhuming Wang,Lifang Wuow they can be used to detect anomalies, and how you can implement anomaly detection using LSTM. You will work through several datasets depicting time series of different types of data, such as CPU utilization, taxi demand, etc., to illustrate how to detect anomalies. This chapter introduces you to
38#
發(fā)表于 2025-3-28 05:40:35 | 只看該作者
https://doi.org/10.1007/978-981-99-7549-5es can be used to address practical use cases and address real-life problems in the business landscape. Every business and use case is different, and we cannot simply copy and paste code and build a successful model to detect anomalies in any dataset, so this chapter covers many use cases to give yo
39#
發(fā)表于 2025-3-28 09:09:39 | 只看該作者
8樓
40#
發(fā)表于 2025-3-28 11:45:35 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永年县| 肥西县| 乌恰县| 教育| 余江县| 孝感市| 鲜城| 台东市| 镇平县| 炉霍县| 三穗县| 什邡市| 通化县| 冷水江市| 驻马店市| 安化县| 绥滨县| 湾仔区| 马尔康县| 当阳市| 句容市| 阿勒泰市| 渝北区| 桐庐县| 新田县| 杂多县| 顺平县| 凤阳县| 江油市| 庆城县| 塔河县| 大渡口区| 渭源县| 锡林郭勒盟| 尚义县| 隆尧县| 县级市| 科技| 响水县| 津市市| 汕尾市|