找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; Implement Anomaly De Suman Kalyan Adari,Sridhar Alla Book 2024Latest edition

[復(fù)制鏈接]
查看: 11843|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:15:39 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Beginning Anomaly Detection Using Python-Based Deep Learning
期刊簡稱Implement Anomaly De
影響因子2023Suman Kalyan Adari,Sridhar Alla
視頻videohttp://file.papertrans.cn/183/182227/182227.mp4
發(fā)行地址Explains the machine learning workflow, from data processing through interpretation of model performance.Focuses on time-series with models like LSTM and‘TCN..Covers generative modeling via GANs and s
圖書封面Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; Implement Anomaly De Suman Kalyan Adari,Sridhar Alla Book 2024Latest edition
影響因子.This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. ..?..Beginning Anomaly Detection Using Python-Based Deep Learning. begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders,?recurrent neural networks (
Pindex Book 2024Latest edition
The information of publication is updating

書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡(luò)公開度




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次學(xué)科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用學(xué)科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:41 | 只看該作者
Introduction to Deep Learning,. These concepts will apply to the rest of the book and beyond. In the process, you will also implement a simple neural network model in both TensorFlow/Keras and PyTorch to perform supervised anomaly detection and serve as a gateway into learning how to model in these frameworks.
板凳
發(fā)表于 2025-3-22 00:23:52 | 只看該作者
,Long Short-Term Memory?Models,ow they can be used to detect anomalies, and how you can implement anomaly detection using LSTM. You will work through several datasets depicting time series of different types of data, such as CPU utilization, taxi demand, etc., to illustrate how to detect anomalies. This chapter introduces you to
地板
發(fā)表于 2025-3-22 08:18:25 | 只看該作者
Practical Use Cases and Future Trends of Anomaly Detection,es can be used to address practical use cases and address real-life problems in the business landscape. Every business and use case is different, and we cannot simply copy and paste code and build a successful model to detect anomalies in any dataset, so this chapter covers many use cases to give yo
5#
發(fā)表于 2025-3-22 09:35:11 | 只看該作者
like LSTM and‘TCN..Covers generative modeling via GANs and s.This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised
6#
發(fā)表于 2025-3-22 16:03:21 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:53 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:27 | 只看該作者
9#
發(fā)表于 2025-3-23 05:02:19 | 只看該作者
10#
發(fā)表于 2025-3-23 09:26:54 | 只看該作者
Book 2024Latest editionques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the late
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹凤县| 香港| 无为县| 治县。| 宁南县| 隆尧县| 临城县| 亚东县| 九龙坡区| 宁远县| 康乐县| 曲周县| 盱眙县| 新郑市| 枝江市| 望谟县| 兴和县| 翁牛特旗| 胶州市| 平阳县| 泰兴市| 连江县| 英超| 读书| 竹溪县| 崇阳县| 务川| 甘洛县| 阳西县| 龙口市| 隆安县| 乌兰察布市| 政和县| 龙里县| 喀喇沁旗| 新昌县| 滨州市| 揭东县| 柯坪县| 华容县| 庆云县|