找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Statistics in Actuarial Science; with Emphasis on Cre Stuart A. Klugman Book 1992 Springer Science+Business Media New York 1992 ac

[復(fù)制鏈接]
樓主: OAK
21#
發(fā)表于 2025-3-25 05:41:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:07:43 | 只看該作者
23#
發(fā)表于 2025-3-25 14:04:29 | 只看該作者
The Nikkei Stock Average Prediction by SVMIn this Chapter one more restriction to the normal model of Chapter 6 will be imposed: linearity in the parameters. Within this model most all standard situations involving severity, pure premiums, or loss ratios can be handled. The only reasonable case that cannot be handled is the Poisson model for frequency. This will be covered in Chapter 9.
24#
發(fā)表于 2025-3-25 16:04:51 | 只看該作者
Lecture Notes in Computer ScienceIn this Chapter a number of data sets will be introduced. Then the credibility models from the previous Chapter will be analyzed.
25#
發(fā)表于 2025-3-25 21:58:21 | 只看該作者
26#
發(fā)表于 2025-3-26 01:39:27 | 只看該作者
Examples,In this Chapter a number of data sets will be introduced. Then the credibility models from the previous Chapter will be analyzed.
27#
發(fā)表于 2025-3-26 07:04:30 | 只看該作者
https://doi.org/10.1007/978-94-017-0845-6actuarial science; algorithm; bayesian statistics; calculus; rating; statistical analysis; statistics
28#
發(fā)表于 2025-3-26 08:51:07 | 只看該作者
978-90-481-5790-7Springer Science+Business Media New York 1992
29#
發(fā)表于 2025-3-26 15:38:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:45 | 只看該作者
Prediction with Parameter Uncertainty,l form, but unknown parameters. Of interest is the value of a future observation whose distribution also depends on these parameters. Of course, this is the traditional actuarial problem. The observations are the benefits paid in the past to policyholders and we desire to predict the payments that will be made in the future.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 祁连县| 田东县| 芦溪县| 重庆市| 应用必备| 蒙城县| 元阳县| 松滋市| 丘北县| 岑巩县| 比如县| 自贡市| 纳雍县| 浏阳市| 湖北省| 大石桥市| 浙江省| 黄山市| 苏尼特右旗| 平阳县| 杨浦区| 科技| 贞丰县| 红桥区| 山东| 富民县| 衡南县| 漳州市| 赤城县| 秦安县| 佛冈县| 明溪县| 柯坪县| 麻栗坡县| 盱眙县| 镇康县| 繁峙县| 阜平县| 中方县| 遵义县|