找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Statistical Modeling with Stan, R, and Python; Kentaro Matsuura Book 2022 Springer Nature Singapore Pte Ltd. 2022 Stan.Bayesian M

[復(fù)制鏈接]
查看: 9096|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:27:06 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bayesian Statistical Modeling with Stan, R, and Python
影響因子2023Kentaro Matsuura
視頻videohttp://file.papertrans.cn/182/181881/181881.mp4
發(fā)行地址Provides a highly practical introduction to Bayesian statistical modeling with Stan, illustrating key concepts.Covers topics essential for mastering modeling, including hierarchical models.Presents fu
圖書封面Titlebook: Bayesian Statistical Modeling with Stan, R, and Python;  Kentaro Matsuura Book 2022 Springer Nature Singapore Pte Ltd. 2022 Stan.Bayesian M
影響因子.This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language..The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30
Pindex Book 2022
The information of publication is updating

書目名稱Bayesian Statistical Modeling with Stan, R, and Python影響因子(影響力)




書目名稱Bayesian Statistical Modeling with Stan, R, and Python影響因子(影響力)學(xué)科排名




書目名稱Bayesian Statistical Modeling with Stan, R, and Python網(wǎng)絡(luò)公開度




書目名稱Bayesian Statistical Modeling with Stan, R, and Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Statistical Modeling with Stan, R, and Python被引頻次




書目名稱Bayesian Statistical Modeling with Stan, R, and Python被引頻次學(xué)科排名




書目名稱Bayesian Statistical Modeling with Stan, R, and Python年度引用




書目名稱Bayesian Statistical Modeling with Stan, R, and Python年度引用學(xué)科排名




書目名稱Bayesian Statistical Modeling with Stan, R, and Python讀者反饋




書目名稱Bayesian Statistical Modeling with Stan, R, and Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:47 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:22 | 只看該作者
Vaccine Development for Cytomegalovirusyze spatial data.?It has a wide range of application and can be applied to one-dimensional data, two-dimensional grid data type, and geospatial map data. Later, we will see how a Gaussian process (GP) can be considered as a generalization of a GMRF. A GP can represent smooth functions, and usually gives high prediction performance.
5#
發(fā)表于 2025-3-22 10:34:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:55:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:03 | 只看該作者
Spatial Data Analysis Using Gaussian Markov Random Fields and Gaussian Processesyze spatial data.?It has a wide range of application and can be applied to one-dimensional data, two-dimensional grid data type, and geospatial map data. Later, we will see how a Gaussian process (GP) can be considered as a generalization of a GMRF. A GP can represent smooth functions, and usually gives high prediction performance.
8#
發(fā)表于 2025-3-23 00:45:11 | 只看該作者
Usages of MCMC Samples from Posterior and Predictive Distributionsons and predictive distributions were only kept on very basic levels, such as computing the intervals and visualizations. In this chapter, we will introduce more advanced usages of the?MCMC sample. They would be helpful in practice because it is very common to encounter the situation where we need to extract more information from the?MCMC sample.
9#
發(fā)表于 2025-3-23 05:02:09 | 只看該作者
https://doi.org/10.1007/978-981-19-4755-1Stan; Bayesian Modeling; Statistical Modeling; R; RStan; Python
10#
發(fā)表于 2025-3-23 05:56:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德江县| 萍乡市| 习水县| 德安县| 于田县| 天等县| 称多县| 黑龙江省| 孟村| 宣化县| 肇源县| 方山县| 长岛县| 麻城市| 当阳市| 嘉定区| 成安县| 托克逊县| 商洛市| 修武县| 海伦市| 九寨沟县| 宁乡县| 忻州市| 南华县| 蓬莱市| 怀来县| 宝山区| 镇平县| 乌兰县| 车致| 莒南县| 民勤县| 大石桥市| 潼关县| 元氏县| 常山县| 云霄县| 神农架林区| 襄垣县| 乾安县|