找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Reliability; Michael S. Hamada,Alyson G. Wilson,Harry F. Martz Book 2008 Springer-Verlag New York 2008 Assurance testing.Bayesian

[復(fù)制鏈接]
樓主: KEN
31#
發(fā)表于 2025-3-26 23:24:39 | 只看該作者
Nutrition and Growth in Infancyeous and nonhomogeneous Poisson processes, modulated power law processes, and a piecewise exponential model. This chapter also addresses how well these models fit the data and evaluates current reliability and other performance criteria, which characterize the reliability of repairable systems.
32#
發(fā)表于 2025-3-27 05:04:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:40:17 | 只看該作者
E. Tronick,H. Als,T. B. Brazeltonanning variable situations, we show how to use a genetic algorithm to find a near-optimal plan. This chapter illustrates data collection planning for a number of problems involving binomial, lifetime, accelerated life test, degradation, and system reliability data.
34#
發(fā)表于 2025-3-27 13:32:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:50:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:48 | 只看該作者
Using Degradation Data to Assess Reliability, how to accommodate covariates such as acceleration factors that speed up degradation and experimental factors that impact reliability in reliability improvement experiments. We also consider situations in which degradation measurements are destructive and conclude by introducing alternative stochastic models for degradation data.
37#
發(fā)表于 2025-3-27 22:15:15 | 只看該作者
Planning for Reliability Data Collection,anning variable situations, we show how to use a genetic algorithm to find a near-optimal plan. This chapter illustrates data collection planning for a number of problems involving binomial, lifetime, accelerated life test, degradation, and system reliability data.
38#
發(fā)表于 2025-3-28 05:26:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:14:51 | 只看該作者
Advanced Bayesian Modeling and Computational Methods,istributions that result from these more complicated models in closed form, we begin this chapter with a description of Markov chain Monte Carlo algorithms that can be used to generate samples from intractable posterior distributions. These samples provide the basis for subsequent model inference. W
40#
發(fā)表于 2025-3-28 12:37:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎平县| 凌海市| 乌拉特中旗| 鞍山市| 商城县| 遂昌县| 宁南县| 安康市| 荃湾区| 东辽县| 吉安市| 会昌县| 乌审旗| 五原县| 祁连县| 弥渡县| 临高县| 文登市| 桦甸市| 渭南市| 沅陵县| 文登市| 昭苏县| 全州县| 南漳县| 深州市| 陇川县| 灵宝市| 梅州市| 星子县| 青海省| 岳阳市| 犍为县| 肥西县| 西林县| 普格县| 土默特左旗| 宁化县| 花莲市| 武宣县| 兴业县|