找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Reliability; Michael S. Hamada,Alyson G. Wilson,Harry F. Martz Book 2008 Springer-Verlag New York 2008 Assurance testing.Bayesian

[復(fù)制鏈接]
樓主: KEN
31#
發(fā)表于 2025-3-26 23:24:39 | 只看該作者
Nutrition and Growth in Infancyeous and nonhomogeneous Poisson processes, modulated power law processes, and a piecewise exponential model. This chapter also addresses how well these models fit the data and evaluates current reliability and other performance criteria, which characterize the reliability of repairable systems.
32#
發(fā)表于 2025-3-27 05:04:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:40:17 | 只看該作者
E. Tronick,H. Als,T. B. Brazeltonanning variable situations, we show how to use a genetic algorithm to find a near-optimal plan. This chapter illustrates data collection planning for a number of problems involving binomial, lifetime, accelerated life test, degradation, and system reliability data.
34#
發(fā)表于 2025-3-27 13:32:22 | 只看該作者
35#
發(fā)表于 2025-3-27 14:50:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:48 | 只看該作者
Using Degradation Data to Assess Reliability, how to accommodate covariates such as acceleration factors that speed up degradation and experimental factors that impact reliability in reliability improvement experiments. We also consider situations in which degradation measurements are destructive and conclude by introducing alternative stochastic models for degradation data.
37#
發(fā)表于 2025-3-27 22:15:15 | 只看該作者
Planning for Reliability Data Collection,anning variable situations, we show how to use a genetic algorithm to find a near-optimal plan. This chapter illustrates data collection planning for a number of problems involving binomial, lifetime, accelerated life test, degradation, and system reliability data.
38#
發(fā)表于 2025-3-28 05:26:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:14:51 | 只看該作者
Advanced Bayesian Modeling and Computational Methods,istributions that result from these more complicated models in closed form, we begin this chapter with a description of Markov chain Monte Carlo algorithms that can be used to generate samples from intractable posterior distributions. These samples provide the basis for subsequent model inference. W
40#
發(fā)表于 2025-3-28 12:37:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郧西县| 武隆县| 旬阳县| 湟中县| 越西县| 云浮市| 开封县| 青浦区| 莲花县| 田东县| 伊春市| 渝北区| 图木舒克市| 蒲城县| 黄石市| 清水河县| 池州市| 万全县| 尤溪县| 洪洞县| 铁岭市| 林周县| 乐清市| 当雄县| 大荔县| 比如县| 麻江县| 高邑县| 江西省| 大余县| 淳化县| 边坝县| 犍为县| 阿坝| 如东县| 嘉义市| 乌兰浩特市| 锡林郭勒盟| 香格里拉县| 南乐县| 潞西市|