找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks; Online Environmental Yunfei Xu,Jongeun Choi,Tapabrata Mait

[復(fù)制鏈接]
查看: 14157|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:37:26 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks
期刊簡稱Online Environmental
影響因子2023Yunfei Xu,Jongeun Choi,Tapabrata Maiti
視頻videohttp://file.papertrans.cn/182/181876/181876.mp4
發(fā)行地址Provides the reader with modeling and predictive tools of use in a number of applications of current interest.Problems and solutions gradually increase in complexity throughout the brief so that learn
學(xué)科分類SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks; Online Environmental Yunfei Xu,Jongeun Choi,Tapabrata Mait
影響因子This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constra
Pindex Book 2016
The information of publication is updating

書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks影響因子(影響力)




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks影響因子(影響力)學(xué)科排名




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks網(wǎng)絡(luò)公開度




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks被引頻次




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks被引頻次學(xué)科排名




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks年度引用




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks年度引用學(xué)科排名




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks讀者反饋




書目名稱Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:03:44 | 只看該作者
2191-8112 ns for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constra978-3-319-21920-2978-3-319-21921-9Series ISSN 2191-8112 Series E-ISSN 2191-8120
板凳
發(fā)表于 2025-3-22 01:17:18 | 只看該作者
Book 2016s to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constra
地板
發(fā)表于 2025-3-22 05:36:20 | 只看該作者
5#
發(fā)表于 2025-3-22 09:21:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:36:17 | 只看該作者
7#
發(fā)表于 2025-3-22 20:21:07 | 只看該作者
Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks978-3-319-21921-9Series ISSN 2191-8112 Series E-ISSN 2191-8120
8#
發(fā)表于 2025-3-23 00:14:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:14:08 | 只看該作者
Derek Gregory,Ron Martin,Graham SmithStandard notation is used throughout this book.
10#
發(fā)表于 2025-3-23 07:13:55 | 只看該作者
Political Theory and Human GeographyWe often assume that Gaussian processes are isotropic implying that the covariance function only depends on the distance between locations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 宁南县| 民乐县| 洱源县| 新宾| 济南市| 砚山县| 和政县| 杭州市| 福州市| 英山县| 尼木县| 明星| 瓮安县| 潢川县| 遵义市| 民县| 颍上县| 闻喜县| 格尔木市| 蛟河市| 那曲县| 泗阳县| 历史| 垦利县| 徐水县| 乐至县| 高邮市| 仁怀市| 苏尼特左旗| 广水市| 阳江市| 奉新县| 兴海县| 灵璧县| 金山区| 靖安县| 松江区| 灌云县| 张北县| 阳曲县|