找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Modeling of Uncertainty in Low-Level Vision; Richard Szeliski Book 1989 Kluwer Academic Publishers 1989 Markov random field.Optic

[復(fù)制鏈接]
查看: 6777|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:48:59 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bayesian Modeling of Uncertainty in Low-Level Vision
影響因子2023Richard Szeliski
視頻videohttp://file.papertrans.cn/182/181861/181861.mp4
學(xué)科分類The Springer International Series in Engineering and Computer Science
圖書封面Titlebook: Bayesian Modeling of Uncertainty in Low-Level Vision;  Richard Szeliski Book 1989 Kluwer Academic Publishers 1989 Markov random field.Optic
影響因子Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski‘s Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low- level vision. Recently, probabilistic models have been proposed and used in vision. Sze- liski‘s method has a few distinguishing features that make this monograph im- portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of
Pindex Book 1989
The information of publication is updating

書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision影響因子(影響力)




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision影響因子(影響力)學(xué)科排名




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision網(wǎng)絡(luò)公開度




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision被引頻次




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision被引頻次學(xué)科排名




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision年度引用




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision年度引用學(xué)科排名




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision讀者反饋




書目名稱Bayesian Modeling of Uncertainty in Low-Level Vision讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:09:38 | 只看該作者
https://doi.org/10.1007/978-1-4613-1637-4Markov random field; Optical flow; Stereo; algorithms; behavior; filtering; fractals; knowledge; modeling; se
地板
發(fā)表于 2025-3-22 06:24:40 | 只看該作者
5#
發(fā)表于 2025-3-22 08:58:07 | 只看該作者
6#
發(fā)表于 2025-3-22 12:58:54 | 只看該作者
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/b/image/181861.jpg
7#
發(fā)表于 2025-3-22 21:00:07 | 只看該作者
Springer Series in Design and Innovationf three separate models. The prior model describes the world or its properties which we are trying to estimate. The sensor model describes how any one instance of this world is related to the observations (such as images) which we make. The posterior model, which is obtained by combining the prior a
8#
發(fā)表于 2025-3-22 21:14:54 | 只看該作者
Antonella Petrillo,Federico Zomparellilar instantiation of a general ., and are constrained by the . that is available for their implementation. Representations make certain types of information explicit, while requiring that other information be computed when needed. For example, a depth map and an orientation map may represent the sam
9#
發(fā)表于 2025-3-23 01:36:03 | 只看該作者
Voice Messaging User Interface,nd Hart 1973). This probabilistic approach fell into disuse, however, as computer vision shifted its attention to the understanding of the physics of image formation and the solution of inverse problems. Bayesian modeling has had a recent resurgence, due in part to the increased sophistication avail
10#
發(fā)表于 2025-3-23 07:36:23 | 只看該作者
Voice Messaging User Interface, as the prior probabilities of different terrain types used in our remote sensing example of Section 3.1, or as complicated as the initial state (position, orientation and velocity) estimate of a satellite in a Kaiman filter on-line estimation system. When applied to low-level vision, prior models e
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛冈县| 社会| 太白县| 吉首市| 门头沟区| 孟州市| 哈巴河县| 安顺市| 阿巴嘎旗| 夏津县| 伊金霍洛旗| 黄陵县| 卢龙县| 武川县| 呼图壁县| 滨州市| 苏尼特右旗| 铜陵市| 华容县| 任丘市| 凯里市| 泰来县| 武清区| 察隅县| 资中县| 阜阳市| 通城县| 新竹市| 河南省| 崇左市| 山阳县| 慈溪市| 河源市| 长白| 海兴县| 陇南市| 手游| 阿鲁科尔沁旗| 安阳县| 卢氏县| 张家港市|