找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Learning for Neural Networks; Radford M. Neal Book 1996 Springer Science+Business Media New York 1996 Fitting.Likelihood.algorith

[復(fù)制鏈接]
查看: 20651|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:36:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bayesian Learning for Neural Networks
影響因子2023Radford M. Neal
視頻videohttp://file.papertrans.cn/182/181856/181856.mp4
學(xué)科分類Lecture Notes in Statistics
圖書封面Titlebook: Bayesian Learning for Neural Networks;  Radford M. Neal Book 1996 Springer Science+Business Media New York 1996 Fitting.Likelihood.algorith
影響因子Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.
Pindex Book 1996
The information of publication is updating

書目名稱Bayesian Learning for Neural Networks影響因子(影響力)




書目名稱Bayesian Learning for Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Bayesian Learning for Neural Networks網(wǎng)絡(luò)公開度




書目名稱Bayesian Learning for Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Learning for Neural Networks被引頻次




書目名稱Bayesian Learning for Neural Networks被引頻次學(xué)科排名




書目名稱Bayesian Learning for Neural Networks年度引用




書目名稱Bayesian Learning for Neural Networks年度引用學(xué)科排名




書目名稱Bayesian Learning for Neural Networks讀者反饋




書目名稱Bayesian Learning for Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:17:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:40 | 只看該作者
https://doi.org/10.1007/978-1-61779-267-0t hybrid Monte Carlo performs better than simple Metropolis,due to its avoidance of random walk behaviour. I also discuss variants of hybrid Monte Carlo in which dynamical computations are done using “partial gradients”, in which acceptance is based on a “window” of states,and in which momentum updates incorporate “persistence”.
5#
發(fā)表于 2025-3-22 12:32:48 | 只看該作者
Hiroe Ohnishi,Yasuaki Oda,Hajime Ohgushiirrelevant inputs in tests on synthetic regression and classification problems. Tests on two real data sets showed that Bayesian neural network models, implemented using hybrid Monte Carlo, can produce good results when applied to realistic problems of moderate size.
6#
發(fā)表于 2025-3-22 13:18:10 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:15 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:01 | 只看該作者
Conclusions and Further Work,oncluding chapter, I will review what has been accomplished in these areas, and describe on-going and potential future work to extend these results, both for neural networks and for other flexible Bayesian models.
9#
發(fā)表于 2025-3-23 01:23:07 | 只看該作者
https://doi.org/10.1007/978-1-61779-794-1, challenges the common notion that one must limit the complexity of the model used when the amount of training data is small. I begin here by introducing the Bayesian framework, discussing past work on applying it to neural networks, and reviewing the basic concepts of Markov chain Monte Carlo implementation.
10#
發(fā)表于 2025-3-23 08:32:30 | 只看該作者
Introduction,, challenges the common notion that one must limit the complexity of the model used when the amount of training data is small. I begin here by introducing the Bayesian framework, discussing past work on applying it to neural networks, and reviewing the basic concepts of Markov chain Monte Carlo implementation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衢州市| 凤山市| 桐乡市| 宁阳县| 镇巴县| 抚松县| 兰考县| 苍梧县| 阜新市| 西安市| 轮台县| 中西区| 永康市| 湖北省| 修武县| 武汉市| 花莲市| 永靖县| 仪征市| 汉川市| 鄢陵县| 喜德县| 古蔺县| 和硕县| 元朗区| 福清市| 揭西县| 凤翔县| 牟定县| 呼伦贝尔市| 商水县| 获嘉县| 象山县| 新余市| 汝城县| 广灵县| 嘉禾县| 龙陵县| 正宁县| 桐城市| 仁化县|