找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference of State Space Models; Kalman Filtering and Kostas Triantafyllopoulos Textbook 2021 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 30279|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:40:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bayesian Inference of State Space Models
期刊簡(jiǎn)稱Kalman Filtering and
影響因子2023Kostas Triantafyllopoulos
視頻videohttp://file.papertrans.cn/182/181853/181853.mp4
發(fā)行地址Provides a comprehensive account of linear and non-linear state space modelling, including R.Discusses in detail the applications to financial time series, dynamic systems, and control.Reviews simulat
學(xué)科分類Springer Texts in Statistics
圖書封面Titlebook: Bayesian Inference of State Space Models; Kalman Filtering and Kostas Triantafyllopoulos Textbook 2021 The Editor(s) (if applicable) and Th
影響因子.Bayesian Inference of State Space Models: Kalman Filtering and Beyond. offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering..Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, in
Pindex Textbook 2021
The information of publication is updating

書目名稱Bayesian Inference of State Space Models影響因子(影響力)




書目名稱Bayesian Inference of State Space Models影響因子(影響力)學(xué)科排名




書目名稱Bayesian Inference of State Space Models網(wǎng)絡(luò)公開度




書目名稱Bayesian Inference of State Space Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Inference of State Space Models被引頻次




書目名稱Bayesian Inference of State Space Models被引頻次學(xué)科排名




書目名稱Bayesian Inference of State Space Models年度引用




書目名稱Bayesian Inference of State Space Models年度引用學(xué)科排名




書目名稱Bayesian Inference of State Space Models讀者反饋




書目名稱Bayesian Inference of State Space Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:36:35 | 只看該作者
History, Concepts, and Prospects,ion state space models. The chapter sets the stage for the book and provides a chapter-by-chapter description of the book. The chapter includes a brief historical overview of the developments that led to the discovery of the Kalman filter and the research directions in the wider field of state space modelling.
地板
發(fā)表于 2025-3-22 06:55:33 | 只看該作者
History, Concepts, and Prospects,g Bayesian conjugate methods, EM algorithm and Markov chain Monte Carlo methods. In particular, the forward filtering backward sampling is discussed in detail. A data set consisting of daily values of several pollutants is used to illustrate estimation and forecasting.
5#
發(fā)表于 2025-3-22 10:39:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:46:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:37:21 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:40 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:20 | 只看該作者
Matrix Algebra, Probability and Statistics,stributions are briefly discussed. In a similar fashion we set the statistics background, with a focus on Bayesian inference. Some statistical topics such as Markov chain Monte Carlo and particle filters are introduced in later chapters.
10#
發(fā)表于 2025-3-23 08:24:50 | 只看該作者
The Kalman Filter, fixed-interval smoothing and covariance smoothing is discussed in some detail. The chapter concludes by considering the steady state of the Kalman filter, motivated by considering the random walk plus noise model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谷城县| 宜宾县| 伊宁市| 息烽县| 封丘县| 建湖县| 华亭县| 洮南市| 湛江市| 巴楚县| 安徽省| 麻江县| 吉木萨尔县| 冕宁县| 广汉市| 游戏| 汉沽区| 黄大仙区| 修武县| 北票市| 龙江县| 和顺县| 望谟县| 横山县| 镇安县| 华坪县| 盈江县| 遂平县| 龙井市| 锡林郭勒盟| 临颍县| 玛沁县| 普宁市| 嘉荫县| 蒲城县| 深水埗区| 三江| 黄骅市| 平塘县| 敦煌市| 阿图什市|