找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference in Wavelet-Based Models; Peter Müller,Brani Vidakovic Book 1999 Springer Science+Business Media New York 1999 Markov mo

[復(fù)制鏈接]
查看: 41105|回復(fù): 68
樓主
發(fā)表于 2025-3-21 16:58:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bayesian Inference in Wavelet-Based Models
影響因子2023Peter Müller,Brani Vidakovic
視頻videohttp://file.papertrans.cn/182/181852/181852.mp4
學(xué)科分類Lecture Notes in Statistics
圖書封面Titlebook: Bayesian Inference in Wavelet-Based Models;  Peter Müller,Brani Vidakovic Book 1999 Springer Science+Business Media New York 1999 Markov mo
影響因子This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor- tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a ver
Pindex Book 1999
The information of publication is updating

書目名稱Bayesian Inference in Wavelet-Based Models影響因子(影響力)




書目名稱Bayesian Inference in Wavelet-Based Models影響因子(影響力)學(xué)科排名




書目名稱Bayesian Inference in Wavelet-Based Models網(wǎng)絡(luò)公開度




書目名稱Bayesian Inference in Wavelet-Based Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bayesian Inference in Wavelet-Based Models被引頻次




書目名稱Bayesian Inference in Wavelet-Based Models被引頻次學(xué)科排名




書目名稱Bayesian Inference in Wavelet-Based Models年度引用




書目名稱Bayesian Inference in Wavelet-Based Models年度引用學(xué)科排名




書目名稱Bayesian Inference in Wavelet-Based Models讀者反饋




書目名稱Bayesian Inference in Wavelet-Based Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:02 | 只看該作者
https://doi.org/10.1007/978-981-13-6332-0el for its wavelet coefficients by establishing a relationship between the hyperparameters of the proposed model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relation may be seen as giving insight into the meaning of the Besov space parameters t
地板
發(fā)表于 2025-3-22 05:12:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:30 | 只看該作者
Women: Facing the Challenge of Migration,for the piecewise constant Haar wavelet basis, then extended to using smooth wavelet bases. Although developed initially for use in the standard change-point model, the analysis can be applied to the problem of estimating the location of a discontinuity in an otherwise smooth function by considering
6#
發(fā)表于 2025-3-22 15:36:30 | 只看該作者
https://doi.org/10.1007/978-3-319-66957-1distribution. Elicitation in the wavelet domain is considered by first describing the structure of a wavelet model, and examining several prior distributions that are used in a variety of recent articles. Although elicitation has not been directly considered in many of these papers, most do attach s
7#
發(fā)表于 2025-3-22 19:03:35 | 只看該作者
8#
發(fā)表于 2025-3-23 01:16:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:53 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:39 | 只看該作者
Applications of the Proposed Techniques,signal. Applying these deterministic search techniques to stochastic signals may, however, lead to statistically unreliable results. In this chapter, we revisit this problem and introduce prior models on the underlying signal in noise. We propose several techniques to derive the prior parameters and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰兴市| 寿光市| 四川省| 洪洞县| 海丰县| 平塘县| 西乌珠穆沁旗| 紫阳县| 宁晋县| 乐亭县| 平谷区| 宝应县| 揭阳市| 巨鹿县| 淄博市| 民丰县| 洪洞县| 佛冈县| 塔城市| 通城县| 固始县| 加查县| 依安县| 南漳县| 家居| 准格尔旗| 临桂县| 平昌县| 尉犁县| 襄汾县| 秀山| 饶阳县| 花莲市| 读书| 金昌市| 龙川县| 土默特右旗| 南昌县| 河间市| 屏山县| 浦城县|