找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference and Computation in Reliability and Survival Analysis; Yuhlong Lio,Ding-Geng Chen,Tzong-Ru Tsai Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: Alacrity
51#
發(fā)表于 2025-3-30 10:49:10 | 只看該作者
Bayesian Analysis of a New Bivariate Wiener Degradation Processlifetime have analytic forms and are presented in this chapter. Statistical inference is conducted by data augmentation and Bayesian methods. Weak informative priors are considered, and Gibbs sampling method is utilized to draw sample for the evaluation of the unknown parameters. A simulated example is used for illustration purpose.
52#
發(fā)表于 2025-3-30 15:56:33 | 只看該作者
A Bayesian Approach for the Analysis of Tumorigenicity Data from Sacrificial Experiments Under Weibuthe performance of the developed Bayesian approach with different priors. A comparison is also made with the likelihood estimates determined from an EM algorithm. Finally, a known mice tumor toxicology dataset is analyzed to illustrate the developed Bayesian approach.
53#
發(fā)表于 2025-3-30 19:59:55 | 只看該作者
54#
發(fā)表于 2025-3-30 22:36:13 | 只看該作者
Jasmine Grabher,Madeleine Grawehrs like relapse and a terminal event like death. We develop Bayesian methods to analyze clustered data under the semi-competing risks framework. Subsequently, R program codes are provided to analyze publically available breast cancer data. Parameter estimations are performed based on Gibbs sampling within Metropolis–Hastings algorithm.
55#
發(fā)表于 2025-3-31 03:52:22 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:23 | 只看該作者
57#
發(fā)表于 2025-3-31 09:49:01 | 只看該作者
Bayesian Analysis for Clustered Data under a Semi-Competing Risks Frameworks like relapse and a terminal event like death. We develop Bayesian methods to analyze clustered data under the semi-competing risks framework. Subsequently, R program codes are provided to analyze publically available breast cancer data. Parameter estimations are performed based on Gibbs sampling within Metropolis–Hastings algorithm.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特后旗| 兴安盟| 怀远县| 泾川县| 石泉县| 石家庄市| 天祝| 昆山市| 铁岭市| 广安市| 丽水市| 两当县| 西华县| 日土县| 德清县| 拉孜县| 苗栗县| 南阳市| 涞源县| 海兴县| 凉山| 本溪| 漳浦县| 石首市| 府谷县| 稻城县| 建水县| 沙洋县| 临桂县| 孟津县| 灵璧县| 涞源县| 云林县| 新丰县| 怀集县| 浮山县| 达州市| 松原市| 永寿县| 临江市| 武宣县|