找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference and Computation in Reliability and Survival Analysis; Yuhlong Lio,Ding-Geng Chen,Tzong-Ru Tsai Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: Alacrity
11#
發(fā)表于 2025-3-23 11:00:24 | 只看該作者
Katrin Winkler,Nelly Heim,Tabea Heinzuch as the log-rank test and the Cox proportional hazards model assume non-informative censoring for time-to-event data, and mixed model analysis assumes missing-at-random (MAR) in longitudinal trials. Although such assumptions play a critical role in influencing the outcome of the analysis, there a
12#
發(fā)表于 2025-3-23 16:45:49 | 只看該作者
13#
發(fā)表于 2025-3-23 21:45:08 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:35 | 只看該作者
Jasmine Grabher,Madeleine Grawehrdata are very common in medical and epidemiological studies. In this chapter, we discuss a Bayesian approach for correlated interval-censored data under a dynamic Cox regression model. Some methods that incorporate right censoring have been developed for time-to-event data with temporal covariate ef
16#
發(fā)表于 2025-3-24 08:23:35 | 只看該作者
Alexander Kuteynikov,Anatoly Boyashove considered a randomized clinical trial in which both longitudinal data and survival data were collected to compare the efficacy and the safety of two antiretroviral drugs in treating patients who had failed or were intolerant of zidovudine (AZT) therapy. Using these data, we demonstrated the advan
17#
發(fā)表于 2025-3-24 14:05:02 | 只看該作者
Bayesian Computation in a Birnbaum–Saunders Reliability Model with Applications to Fatigue Data effect of two treatments and evaluate reliability. Bayesian computation is considered for inferring on the parameters of the Birnbaum–Saunders reliability model analyzed in this work. The methodology is applied to real fatigue data with the aid of the R software.
18#
發(fā)表于 2025-3-24 15:33:48 | 只看該作者
19#
發(fā)表于 2025-3-24 20:31:37 | 只看該作者
https://doi.org/10.1007/978-3-030-88658-5Bayes; Bayesian inference; statistical computing; reliability analysis; survival analysis
20#
發(fā)表于 2025-3-25 02:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
当涂县| 靖安县| 凤台县| 万全县| 威海市| 镇原县| 京山县| 盱眙县| 尚义县| 栾川县| 广汉市| 诸暨市| 阜城县| 武定县| 安丘市| 沛县| 泸定县| 五峰| 临颍县| 兴仁县| 临汾市| 广昌县| 临澧县| 渭南市| 滨海县| 广丰县| 莱芜市| 湘潭市| 莫力| 武宁县| 丹江口市| 晋中市| 承德市| 温宿县| 辽宁省| 鹿邑县| 南漳县| 宜春市| 上犹县| 温州市| 成安县|