找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference; Parameter Estimation Hanns L. Harney Textbook 20031st edition Springer-Verlag Berlin Heidelberg 2003 Bayes Theorem.Data

[復制鏈接]
查看: 17797|回復: 55
樓主
發(fā)表于 2025-3-21 17:39:46 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bayesian Inference
期刊簡稱Parameter Estimation
影響因子2023Hanns L. Harney
視頻videohttp://file.papertrans.cn/182/181848/181848.mp4
發(fā)行地址Brings a basic introduction for advanced undergraduates and graduates.With applications to physics.Works also w/o thorough knowledge of quantum mechanics.Includes supplementary material:
學科分類Advanced Texts in Physics
圖書封面Titlebook: Bayesian Inference; Parameter Estimation Hanns L. Harney Textbook 20031st edition Springer-Verlag Berlin Heidelberg 2003 Bayes Theorem.Data
影響因子.Filling a longstanding need in the physical sciences, .Bayesian Inference. offers the first basic introduction for advanced undergraduates and graduates in the physical sciences. This text and reference generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This usually occurs in frontier science because the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins. In this case, the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. Requiring no knowledge of quantum mechanics, the text is written on introductory level, with many examples and exercises, for physicists planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos...?.
Pindex Textbook 20031st edition
The information of publication is updating

書目名稱Bayesian Inference影響因子(影響力)




書目名稱Bayesian Inference影響因子(影響力)學科排名




書目名稱Bayesian Inference網(wǎng)絡公開度




書目名稱Bayesian Inference網(wǎng)絡公開度學科排名




書目名稱Bayesian Inference被引頻次




書目名稱Bayesian Inference被引頻次學科排名




書目名稱Bayesian Inference年度引用




書目名稱Bayesian Inference年度引用學科排名




書目名稱Bayesian Inference讀者反饋




書目名稱Bayesian Inference讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:29 | 只看該作者
,Bayes’ Theorem,of densities and functions are discussed in Sect. 2.2. A symmetry argument can define the prior. This is described in Sects. 2.3 and 2.4. Prior distributions are not necessarily proper. In Sect. 2.5, we comment on improper distributions because it is unusual to admit any of them.
板凳
發(fā)表于 2025-3-22 02:09:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:24 | 只看該作者
Form Invariance I: Real ,, density discussed in Sect. 2.2. Under a reparameterisation of the hypothesis, the uniform density generally changes into another one that is no longer uniform. If there were a distribution invariant under all transformations, it would be the universal ignorance prior. Such a distribution does not e
5#
發(fā)表于 2025-3-22 12:47:40 | 只看該作者
Beyond Form Invariance: The Geometric Prior,ticular, without knowledge of the multiplication function. This is useful because the analysis of the symmetry group may be difficult. This is also of basic importance, since the formula allows one to generalise the definition of the prior distribution to cases where form invariance does not exist.
6#
發(fā)表于 2025-3-22 13:32:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:47 | 只看該作者
Independence of Parameters,l . is assumed here to have two parameters. The way in which the model connects the parameters .. and .. with the set . = (.., ..., ..) of events may be such that it is impossible to integrate over one of them — say .. — and to infer .. individually. The reason is that it may be impossible to define
8#
發(fā)表于 2025-3-22 21:28:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:14 | 只看該作者
Judging a Fit I: Real ,, 13, the function .(.) is actually a family of functions .(.; .), and one determines the range of . that falls into the Bayesian area. It is possible that even the optimum parameter .., defined in Sect. 3.3, yields an inadequate fit. The optimum parameter suggests that one can represent the observed
10#
發(fā)表于 2025-3-23 08:24:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宣恩县| 旬阳县| 古丈县| 宜宾市| 黔西| 喀喇沁旗| 娱乐| 遵义市| 泽库县| 雅江县| 遵义县| 永嘉县| 那曲县| 徐州市| 滦平县| 沾益县| 宣恩县| SHOW| 黔西县| 遂平县| 商洛市| 南康市| 屯留县| 渝中区| 太湖县| 措勤县| 含山县| 确山县| 营山县| 静安区| 盐亭县| 保亭| 盐城市| 犍为县| 色达县| 绥德县| 高陵县| 灵川县| 大足县| 盐城市| 北川|