找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Computation with R; Jim Albert Textbook 20071st edition Springer-Verlag New York 2007 Bayesian Inference.Hierarchical modeling.Ma

[復(fù)制鏈接]
樓主: 推翻
31#
發(fā)表于 2025-3-26 22:56:28 | 只看該作者
Regression Models,el and describe algorithms to simulate from the joint distribution of regression parameters and error variance and the predictive distribution of future observations. One can judge the adequacy of the fitted model through use of the posterior predictive distribution and the inspection of the posteri
32#
發(fā)表于 2025-3-27 04:22:31 | 只看該作者
Gibbs Sampling,ppose that we partition the parameter vector of interest into . components . = (.1.), where . may consist of a vector of parameters. The MCMC algorithm is implemented by sampling in turn from the . conditional posterior distributions.
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
34#
發(fā)表于 2025-3-27 10:05:27 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:02 | 只看該作者
Claus Hüsselmann,Thomas Hemmannsian inference for a variance for a normal population and inference for a Poisson mean when informative prior information is available. For both problems, summarization of the posterior distribution is facilitated by the use of R functions to compute and simulate distributions from the exponential f
36#
發(fā)表于 2025-3-27 18:51:41 | 只看該作者
Claus Hüsselmann,Thomas Hemmannation or multinomial parameters, posterior inference is accomplished by simulating from distributions of standard forms. Once a simulated sample is obtained from the joint posterior, it is straightforward to perform transformations on these simulated draws to learn about any function of the paramete
37#
發(fā)表于 2025-3-28 00:23:53 | 只看該作者
38#
發(fā)表于 2025-3-28 06:10:56 | 只看該作者
Rolf Irion,Fabian Schmidt-Schr?derrior distribution, but it can be difficult to set up since it requires the construction of a suitable proposal density. Importance sampling and SIR algorithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In
39#
發(fā)表于 2025-3-28 08:17:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
从化市| 二连浩特市| 永康市| 蛟河市| 千阳县| 桃园市| 祁门县| 阿城市| 辽宁省| 贺兰县| 黄龙县| 郧西县| 文成县| 长阳| 都兰县| 临夏市| 西林县| 永春县| 通榆县| 乌恰县| 津南区| 富宁县| 湘乡市| 崇礼县| 东兰县| 龙州县| 雅江县| 临汾市| 南郑县| 镇平县| 清新县| 维西| 黄石市| 商水县| 武陟县| 新平| 班戈县| 大连市| 迁安市| 晴隆县| 准格尔旗|