找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Compendium; Marcel van Oijen Textbook 20201st edition Springer Nature Switzerland AG 2020 Bayesian methods.Multidimensionality.Sa

[復(fù)制鏈接]
樓主: CILIA
11#
發(fā)表于 2025-3-23 13:01:32 | 只看該作者
12#
發(fā)表于 2025-3-23 14:50:04 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:37 | 只看該作者
Introduction to Bayesian Science,In science, we use models to help us learn from data. But we always work with incomplete theory and measurements that contain errors.
14#
發(fā)表于 2025-3-23 23:01:44 | 只看該作者
Assigning a Likelihood Function,As scientists, we want to know how to parameterise our models, make comparisons with other models, and quantify model predictive uncertainty. For all these purposes, measurement data are needed, but how exactly should we use the data? The answer is always the same: in the ..
15#
發(fā)表于 2025-3-24 04:51:41 | 只看該作者
Sampling from Any Distribution by MCMC,The Bayesian approach to parameter estimation requires modellers to make a major mental shift: we no longer aim to find a single ‘best’ parameter vector—instead we aim to determine the posterior probability distribution for the parameters.
16#
發(fā)表于 2025-3-24 08:59:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:10:21 | 只看該作者
MCMC and Complex Models,In this chapter we focus on models with multivariate output. That includes most process-based models (PBMs). Models with multivariate output are not fundamentally different from the simpler models we studied in the previous chapters, we can still write them as functions . of their input consisting of covariates . and parameters ..
18#
發(fā)表于 2025-3-24 16:18:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:00 | 只看該作者
After the Calibration: Interpretation, Reporting, Visualization,This?chapter discusses what needs to be done after your Bayesian calibration: how to interpret your results, what to report and how to report it with emphasis on visualization.
20#
發(fā)表于 2025-3-25 02:46:47 | 只看該作者
Model Ensembles: BMC and BMA,In this chapter, we discuss how multiple ‘competing’ models can be used simultaneously. There are advantages to having multiple different models, as was already recognized by Chamberlin in the 19th century (Chamberlin 1890).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新竹市| 大厂| 铜梁县| 当阳市| 辉南县| 普兰县| 河北省| 广西| 浑源县| 双江| 眉山市| 横峰县| 福州市| 阜平县| 武威市| 青川县| 建始县| 鄂托克前旗| 莱芜市| 维西| 莲花县| 且末县| 平潭县| 合江县| 通辽市| 垫江县| 达孜县| 泰来县| 周至县| 阿鲁科尔沁旗| 东辽县| 衡东县| 贵南县| 通化县| 铜鼓县| 铜梁县| 天峨县| 油尖旺区| 莲花县| 广德县| 钟山县|