找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basis Sets in Computational Chemistry; Eva Perlt Book 2021 Springer Nature Switzerland AG 2021 quantum chemistry.wave function.basis sets.

[復(fù)制鏈接]
樓主: 威風(fēng)
11#
發(fā)表于 2025-3-23 12:54:37 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:36 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:01 | 只看該作者
Francesco Lupi,Michele Lanzettaies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
16#
發(fā)表于 2025-3-24 06:48:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:04 | 只看該作者
An Introduction to Discretization Error Analysis for Computational Chemists,ies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
18#
發(fā)表于 2025-3-24 17:59:26 | 只看該作者
Basis Sets for Heavy Atoms,ess of the basis set used for these heavy atoms and, in most cases, the relativistic effects. Thus, this chapter addresses the basis sets for heavy elements with a focus on the understanding of transition d-metal with the potential biological application.
19#
發(fā)表于 2025-3-24 19:01:21 | 只看該作者
https://doi.org/10.1007/978-3-030-96060-5 correlation, and convergence toward the exact, complete basis set limit. Finally, selected basis sets are presented, along with the characteristics pertinent to their construction and successful applications.
20#
發(fā)表于 2025-3-25 00:25:36 | 只看該作者
Antonio Maturo,Rina Manuela Contini implementation of such methods for extended systems is a challenging topic. In any case, the task is to solve the Schr?dinger or Kohn-Sham equations numerically. The approximate solution is usually expanded in a basis set. The purpose of this chapter is an overview of these basis sets, with the main focus on Gaussian basis sets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹溪县| 大邑县| 常州市| 甘谷县| 扎鲁特旗| 防城港市| 北辰区| 灵川县| 楚雄市| 苍山县| 万山特区| 黄龙县| 渭南市| 九龙坡区| 石门县| 巢湖市| 曲沃县| 左贡县| 抚顺市| 龙胜| 吴堡县| 长春市| 漾濞| 垫江县| 和龙市| 龙井市| 延津县| 邯郸县| 随州市| 阳曲县| 尉氏县| 原阳县| 蓝山县| 衡东县| 洛川县| 沙坪坝区| 海丰县| 马山县| 澄迈县| 揭西县| 嘉祥县|