找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basis Sets in Computational Chemistry; Eva Perlt Book 2021 Springer Nature Switzerland AG 2021 quantum chemistry.wave function.basis sets.

[復制鏈接]
樓主: 威風
11#
發(fā)表于 2025-3-23 12:54:37 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:36 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:01 | 只看該作者
Francesco Lupi,Michele Lanzettaies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
16#
發(fā)表于 2025-3-24 06:48:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:04 | 只看該作者
An Introduction to Discretization Error Analysis for Computational Chemists,ies, they are illustrated on the example of the plane-wave discretization of the periodic Gross-Pitaevskii model for Bose-Einstein condensates. This model shares many common features with the Hartree-Fock and Kohn-Sham models, while being mathematically simpler. Extensions to Kohn-Sham models are discussed.
18#
發(fā)表于 2025-3-24 17:59:26 | 只看該作者
Basis Sets for Heavy Atoms,ess of the basis set used for these heavy atoms and, in most cases, the relativistic effects. Thus, this chapter addresses the basis sets for heavy elements with a focus on the understanding of transition d-metal with the potential biological application.
19#
發(fā)表于 2025-3-24 19:01:21 | 只看該作者
https://doi.org/10.1007/978-3-030-96060-5 correlation, and convergence toward the exact, complete basis set limit. Finally, selected basis sets are presented, along with the characteristics pertinent to their construction and successful applications.
20#
發(fā)表于 2025-3-25 00:25:36 | 只看該作者
Antonio Maturo,Rina Manuela Contini implementation of such methods for extended systems is a challenging topic. In any case, the task is to solve the Schr?dinger or Kohn-Sham equations numerically. The approximate solution is usually expanded in a basis set. The purpose of this chapter is an overview of these basis sets, with the main focus on Gaussian basis sets.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巴林左旗| 通城县| 安康市| 临城县| 通河县| 茌平县| 金乡县| 新化县| 定襄县| 石棉县| 都匀市| 嵊泗县| 定安县| 青铜峡市| 贵港市| 喀什市| 霍山县| 遵义县| 玛多县| 宣城市| 余干县| 留坝县| 泰兴市| 临邑县| 临澧县| 楚雄市| 宁强县| 鄯善县| 元朗区| 河东区| 修武县| 峨眉山市| 屏东市| 塘沽区| 伊春市| 商水县| 辉县市| 新蔡县| 武夷山市| 小金县| 海原县|