找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology; M. A. Armstrong Textbook 1983 Springer Science+Business Media New York 1983 Algebraic topology.Basic.Fundamental group.Top

[復(fù)制鏈接]
樓主: CROSS
21#
發(fā)表于 2025-3-25 04:08:07 | 只看該作者
Surfaces,of regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
22#
發(fā)表于 2025-3-25 09:31:36 | 只看該作者
Simplicial Homology,he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
23#
發(fā)表于 2025-3-25 13:40:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
W. G. Schmidt,P. H. Hahn,F. Bechstedtof regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
27#
發(fā)表于 2025-3-26 07:13:19 | 只看該作者
https://doi.org/10.1007/978-3-642-59354-3he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
28#
發(fā)表于 2025-3-26 12:11:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 长顺县| 甘孜县| 聂拉木县| 肥西县| 浦北县| 石泉县| 克山县| 衡阳市| 南溪县| 丹阳市| 肥城市| 台湾省| 固原市| 共和县| 太原市| 扶绥县| 木兰县| 西贡区| 嘉定区| 新龙县| 铜川市| 五华县| 湾仔区| 白城市| 定日县| 普格县| 灌云县| 蓬溪县| 乐东| 依安县| 休宁县| 阿克陶县| 滕州市| 措勤县| 乡宁县| 壶关县| 孟津县| 定边县| 怀来县| 青阳县|