找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology; M. A. Armstrong Textbook 1983 Springer Science+Business Media New York 1983 Algebraic topology.Basic.Fundamental group.Top

[復(fù)制鏈接]
樓主: CROSS
21#
發(fā)表于 2025-3-25 04:08:07 | 只看該作者
Surfaces,of regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
22#
發(fā)表于 2025-3-25 09:31:36 | 只看該作者
Simplicial Homology,he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
23#
發(fā)表于 2025-3-25 13:40:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
W. G. Schmidt,P. H. Hahn,F. Bechstedtof regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
27#
發(fā)表于 2025-3-26 07:13:19 | 只看該作者
https://doi.org/10.1007/978-3-642-59354-3he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
28#
發(fā)表于 2025-3-26 12:11:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元江| 明水县| 纳雍县| 苍溪县| 澎湖县| 高雄市| 恭城| 宜宾县| 临清市| 临桂县| 当阳市| 绥芬河市| 桃园县| 平塘县| 阳谷县| 佛坪县| 东阿县| 万源市| 肇州县| 兴海县| 抚远县| 衡阳县| 台中市| 英超| 八宿县| 柳林县| 金阳县| 大同市| 栖霞市| 临沧市| 宁国市| 南江县| 龙门县| 汉阴县| 惠州市| 庆安县| 关岭| 苍南县| 新晃| 嘉定区| 平潭县|