找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Algebraic Groups and Lie Algebras; Gerhard P. Hochschild Textbook 1981 Springer-Verlag New York Inc. 1981 Algebraische Gru

[復(fù)制鏈接]
樓主: introspective
31#
發(fā)表于 2025-3-26 21:26:25 | 只看該作者
R. Leitsmann,F. Bechstedt,F. Ortmanneld-theoretical preparations. Section 2 develops the connections between the algebraic subgroups of an algebraic group . and the sub Lie algebras of .(.) fully, under the assumption that the base field be of characteristic 0. This assumption is retained in Section 3, which is devoted to reducing, as
32#
發(fā)表于 2025-3-27 02:23:36 | 只看該作者
R. Leitsmann,F. Bechstedt,F. Ortmannically closed and that the group is irreducible. In the presence of these assumptions, the solvable groups are characterized by the property that their simple polynomial modules are 1-dimensional. This is the Lie-Kolehin Theorem, given here as Theorem 1.1.
33#
發(fā)表于 2025-3-27 07:48:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:41:44 | 只看該作者
Conductance of Correlated Nanostructurese, equipped with a superstructure of functions. Section 1 introduces pre-varieties, a preliminary notion slightly more general than that of a variety, which is convenient for developing the basic technical results concerning varieties. Section 2 is devoted to products of prevarieties and the notion
35#
發(fā)表于 2025-3-27 17:01:28 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maasalgebra than has been used up to now. Thus, Section 1 establishes Noether’s Normalization Theorem, which is used for reducing some of the required ideal theoretical considerations to the situation of an ordinary polynomial algebra. The remaining results of Section 1 concern the connections between t
36#
發(fā)表于 2025-3-27 20:51:09 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maasver an algebraically closed field ., and . is an algebraic subgroup of .. The main task for this chapter is the construction of an appropriate variety structure on ./.. In Section 1, it appears that [.(.)]. is a suitable candidate for the field .(./.) of rational functions. Starting with this field,
37#
發(fā)表于 2025-3-27 22:06:14 | 只看該作者
38#
發(fā)表于 2025-3-28 02:52:07 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:52 | 只看該作者
40#
發(fā)表于 2025-3-28 12:28:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汾阳市| 剑阁县| 衡阳市| 五家渠市| 满洲里市| 天峨县| 阳朔县| 咸丰县| 敦化市| 岑溪市| 多伦县| 红安县| 华坪县| 澄城县| 利辛县| 鹰潭市| 资源县| 剑川县| 扎赉特旗| 翁牛特旗| 福州市| 石台县| 开鲁县| 肃北| 中超| 泽库县| 贵德县| 墨脱县| 天津市| 凌源市| 陇南市| 连江县| 丰城市| 中江县| 西乌| 龙岩市| 德阳市| 盐边县| 万山特区| 迁安市| 汉源县|