找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Algebraic Groups and Lie Algebras; Gerhard P. Hochschild Textbook 1981 Springer-Verlag New York Inc. 1981 Algebraische Gru

[復(fù)制鏈接]
樓主: introspective
31#
發(fā)表于 2025-3-26 21:26:25 | 只看該作者
R. Leitsmann,F. Bechstedt,F. Ortmanneld-theoretical preparations. Section 2 develops the connections between the algebraic subgroups of an algebraic group . and the sub Lie algebras of .(.) fully, under the assumption that the base field be of characteristic 0. This assumption is retained in Section 3, which is devoted to reducing, as
32#
發(fā)表于 2025-3-27 02:23:36 | 只看該作者
R. Leitsmann,F. Bechstedt,F. Ortmannically closed and that the group is irreducible. In the presence of these assumptions, the solvable groups are characterized by the property that their simple polynomial modules are 1-dimensional. This is the Lie-Kolehin Theorem, given here as Theorem 1.1.
33#
發(fā)表于 2025-3-27 07:48:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:41:44 | 只看該作者
Conductance of Correlated Nanostructurese, equipped with a superstructure of functions. Section 1 introduces pre-varieties, a preliminary notion slightly more general than that of a variety, which is convenient for developing the basic technical results concerning varieties. Section 2 is devoted to products of prevarieties and the notion
35#
發(fā)表于 2025-3-27 17:01:28 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maasalgebra than has been used up to now. Thus, Section 1 establishes Noether’s Normalization Theorem, which is used for reducing some of the required ideal theoretical considerations to the situation of an ordinary polynomial algebra. The remaining results of Section 1 concern the connections between t
36#
發(fā)表于 2025-3-27 20:51:09 | 只看該作者
Ping Wang,Jochen Fr?hlich,Ulrich Maasver an algebraically closed field ., and . is an algebraic subgroup of .. The main task for this chapter is the construction of an appropriate variety structure on ./.. In Section 1, it appears that [.(.)]. is a suitable candidate for the field .(./.) of rational functions. Starting with this field,
37#
發(fā)表于 2025-3-27 22:06:14 | 只看該作者
38#
發(fā)表于 2025-3-28 02:52:07 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:52 | 只看該作者
40#
發(fā)表于 2025-3-28 12:28:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
波密县| 大丰市| 饶阳县| 区。| 南华县| 永福县| 凌源市| 安国市| 麟游县| 克什克腾旗| 喜德县| 阳原县| 五大连池市| 常德市| 兴仁县| 台湾省| 永寿县| 郧西县| 兴山县| 海宁市| 基隆市| 宣汉县| 岳池县| 宜丰县| 凤城市| 泊头市| 阳泉市| 墨脱县| 额济纳旗| 淮滨县| 中牟县| 镇赉县| 贡嘎县| 随州市| 凯里市| 潼关县| 台中市| 镇沅| 历史| 梁山县| 米林县|