找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Structures of Function Field Arithmetic; David Goss Book 1998 Springer-Verlag Berlin Heidelberg 1998 Dimension.Drinfeld module.Grad.

[復(fù)制鏈接]
樓主: 相反
11#
發(fā)表于 2025-3-23 10:34:45 | 只看該作者
12#
發(fā)表于 2025-3-23 14:43:43 | 只看該作者
Additional Topics,In this last section, we will briefly describe . current areas of research into the arithmetic described in the previous nine sections. We emphasize the word “some” as this section is not meant to be considered exhaustive.
13#
發(fā)表于 2025-3-23 21:30:33 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:12 | 只看該作者
978-3-540-63541-3Springer-Verlag Berlin Heidelberg 1998
15#
發(fā)表于 2025-3-24 02:45:15 | 只看該作者
David GossA new and fascinating area of math *.The author is a fundamental contributor to the field *.The first systematic treatment of this subject * Introduces vital areas of current research * Clear expositi
16#
發(fā)表于 2025-3-24 07:39:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:46 | 只看該作者
The Carlitz Module,e, most essential ideas about Drinfeld modules appear in the theory of the Carlitz module. Thus it is an excellent example for the reader to master and keep in mind when reading the more abstract general theory. Our basic reference is [C1], but see also [Go2].
18#
發(fā)表于 2025-3-24 14:58:07 | 只看該作者
Sign Normalized Rank 1 Drinfeld Modules, .. This basic construction is due to David Hayes [Ha3] [Ha2]. Thus we will also call them “Hayes-modules.” We will use Hayes-modules to construct a “cyclotomic theory” of function fields. The reader will find much that is familiar in these extensions from classical theory.
19#
發(fā)表于 2025-3-24 21:11:54 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌县| 平乐县| 志丹县| 巴彦淖尔市| 孝义市| 兖州市| 广州市| 肥城市| 阳泉市| 鹿邑县| 赤峰市| 凯里市| 兰西县| 彭州市| 灵石县| 博爱县| 古交市| 蒲城县| 抚顺县| 辉县市| 定州市| 安图县| 沂源县| 永川市| 阿拉尔市| 江北区| 隆林| 寿阳县| 安庆市| 钟祥市| 吉首市| 冕宁县| 罗甸县| 恭城| 广南县| 噶尔县| 沐川县| 徐州市| 雷州市| 沙坪坝区| 揭西县|