找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Representation Theory of Algebras; Ibrahim Assem,Flávio U. Coelho Textbook 2020 Springer Nature Switzerland AG 2020 Almost split seq

[復(fù)制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 10:10:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:39 | 只看該作者
The radical and almost split sequences,. We define and study irreducible morphisms and almost split sequences in Section II.2. We prove in Section II.3 the existence theorem for almost split sequences and we proceed to apply these sequences to the study of the radical in Section II.4.
13#
發(fā)表于 2025-3-23 21:24:18 | 只看該作者
https://doi.org/10.1007/978-1-4612-2824-0nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
14#
發(fā)表于 2025-3-24 02:00:04 | 只看該作者
High Angle of Attack Aerodynamics to the other. This approach, initiated with the projectivisation procedure, much used by Auslander and his school, culminated in the now very important tilting theory. The aim of this chapter is to present these topics.
15#
發(fā)表于 2025-3-24 03:37:21 | 只看該作者
,The Auslander–Reiten quiver of an algebra,nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
16#
發(fā)表于 2025-3-24 10:04:19 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:24 | 只看該作者
Constructing almost split sequences,ow to apply these results to construct examples of almost split sequences. In the final Section III.4, we relate the Auslander–Reiten translates of a given module over an algebra to that over a quotient algebra.
19#
發(fā)表于 2025-3-24 21:17:20 | 只看該作者
Representation-finite algebras,not have a similar theory for studying representation-infinite algebras, but the ideas and techniques developed for representation-finite algebras still show their usefulness when applied to the understanding of new classes. The aim of this chapter is to prove some of the most important known result
20#
發(fā)表于 2025-3-24 23:19:17 | 只看該作者
Textbook 2020ting to learn the fundamentals of this rapidly growing field. A graduate course innon-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临海市| 大庆市| 措美县| 安阳县| 河北省| 九台市| 仲巴县| 左权县| 深泽县| 阿坝县| 耒阳市| 乌审旗| 留坝县| 普兰店市| 重庆市| 克什克腾旗| 莱芜市| 夹江县| 双柏县| 白河县| 陆丰市| 新郑市| 无棣县| 望江县| 五寨县| 凤庆县| 营山县| 松阳县| 南皮县| 雅江县| 高邑县| 桐庐县| 嘉峪关市| 集贤县| 贞丰县| 射阳县| 苍溪县| 宁都县| 宜宾县| 雷山县| 高雄县|