找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Operator Theory; Israel Gohberg,Seymour Goldberg Textbook 2001 Birkh?user Boston 2001 Applications of Mathematics.Functional Analysi

[復(fù)制鏈接]
樓主: 里程表
11#
發(fā)表于 2025-3-23 10:36:21 | 只看該作者
12#
發(fā)表于 2025-3-23 15:40:04 | 只看該作者
13#
發(fā)表于 2025-3-23 20:00:56 | 只看該作者
,Abri? der gebr?uchlichen Verfahren,In this chapter we review the main properties of the complex n-dimensional space ?. and then we study the Hubert space which is its most natural infinite dimensional generalization. Many applications to classical problems are included (Least squares, Fourier series and others).
14#
發(fā)表于 2025-3-23 23:46:24 | 只看該作者
Sicken im Boden von Ziehteilen,One of the fundamental results in linear algebra is the spectral theorem which states that if . is a finite dimensional Hubert space and A ∈ .(.) is self adjoint, then there exists an orthonormal basis φ.,…, φ. for . and real numbers λ.,…, λ. such that ..
15#
發(fā)表于 2025-3-24 02:41:02 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:40 | 只看該作者
https://doi.org/10.1007/978-3-658-34554-9The aim of this chapter is to describe the motion of a vibrating string in terms of the eigenvalues and eigen-vectors of an integral operator.
17#
發(fā)表于 2025-3-24 13:22:01 | 只看該作者
https://doi.org/10.1007/978-3-663-19754-6The spectral theory which was studied in the preced-ing chapters provides a means for the development of a theory of functions of a compact self adjoint operator. We now present this theory with applications to a var-iety of problems in differential equations.
18#
發(fā)表于 2025-3-24 17:08:29 | 只看該作者
19#
發(fā)表于 2025-3-24 20:38:44 | 只看該作者
20#
發(fā)表于 2025-3-25 02:34:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 祁东县| 二连浩特市| 织金县| 九江市| 乌兰浩特市| 扬中市| 遂平县| 伊金霍洛旗| 银川市| 阜城县| 涟源市| 天祝| 韩城市| 泽库县| 闽清县| 万荣县| 广宁县| 呼玛县| 嘉黎县| 郑州市| 阳东县| 灵川县| 安岳县| 邢台县| 同江市| 乃东县| 怀柔区| 扬州市| 临沭县| 怀集县| 元阳县| 西乡县| 宁晋县| 峨眉山市| 张家川| 邯郸县| 凉城县| 太仆寺旗| 肥西县| 东丰县|