找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復(fù)制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-26 22:07:12 | 只看該作者
32#
發(fā)表于 2025-3-27 03:24:10 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/181085.jpg
33#
發(fā)表于 2025-3-27 06:07:07 | 只看該作者
Basic Number Theory.978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
34#
發(fā)表于 2025-3-27 13:17:15 | 只看該作者
0072-7830 Overview: 978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
35#
發(fā)表于 2025-3-27 15:21:09 | 只看該作者
Janusz Biene,Daniel Kaiser,Holger Marcks finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x? and ....(x) . xx?.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.
36#
發(fā)表于 2025-3-27 20:17:46 | 只看該作者
List of Scientific and Common Names,morphic to the prime field ..=./.., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ?, and the number of its elements is ... If . is a subfield of a field .; with ... elements, .; may also be regarded e.g. as a left vecto
37#
發(fā)表于 2025-3-27 23:56:45 | 只看該作者
https://doi.org/10.1007/978-1-4939-0736-6an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I–2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
38#
發(fā)表于 2025-3-28 02:38:35 | 只看該作者
Herrschaft - Staat - Mitbestimmunglgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of characteristic . >1; and the simultaneous study of these two types of fields t
39#
發(fā)表于 2025-3-28 09:45:00 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广昌县| 麻城市| 邮箱| 平阳县| 嵩明县| 黄石市| 北京市| 葵青区| 辰溪县| 罗山县| 贞丰县| 江永县| 佳木斯市| 盘山县| 温宿县| 屯昌县| 黄山市| 屏边| 白朗县| 松原市| 玉树县| 信阳市| 孟连| 北京市| 六安市| 拉萨市| 虹口区| 林周县| 东乌| 绍兴县| 万宁市| 个旧市| 孟村| 安泽县| 六安市| 涟水县| 海丰县| 百色市| 洱源县| 昆明市| 上饶县|