找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復(fù)制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-26 22:07:12 | 只看該作者
32#
發(fā)表于 2025-3-27 03:24:10 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/181085.jpg
33#
發(fā)表于 2025-3-27 06:07:07 | 只看該作者
Basic Number Theory.978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
34#
發(fā)表于 2025-3-27 13:17:15 | 只看該作者
0072-7830 Overview: 978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
35#
發(fā)表于 2025-3-27 15:21:09 | 只看該作者
Janusz Biene,Daniel Kaiser,Holger Marcks finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x? and ....(x) . xx?.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.
36#
發(fā)表于 2025-3-27 20:17:46 | 只看該作者
List of Scientific and Common Names,morphic to the prime field ..=./.., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ?, and the number of its elements is ... If . is a subfield of a field .; with ... elements, .; may also be regarded e.g. as a left vecto
37#
發(fā)表于 2025-3-27 23:56:45 | 只看該作者
https://doi.org/10.1007/978-1-4939-0736-6an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I–2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
38#
發(fā)表于 2025-3-28 02:38:35 | 只看該作者
Herrschaft - Staat - Mitbestimmunglgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of characteristic . >1; and the simultaneous study of these two types of fields t
39#
發(fā)表于 2025-3-28 09:45:00 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
周口市| 香格里拉县| 浏阳市| 襄汾县| 中宁县| 通化县| 长寿区| 巴林右旗| 美姑县| 资兴市| 郎溪县| 蒙山县| 武宁县| 高阳县| 文安县| 兴宁市| 西乌珠穆沁旗| 白水县| 双城市| 乌海市| 大关县| 延庆县| 奉节县| 行唐县| 浦东新区| 屏东县| 武穴市| 西安市| 凤城市| 辽中县| 盱眙县| 赤城县| 孟连| 鞍山市| 海阳市| 三亚市| 凤凰县| 凌云县| 龙门县| 连江县| 桐柏县|