找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 1995Latest edition Springer-Verlag Berlin Heidelberg 1995 algebraic number field.algebraic number the

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 23:32:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:50 | 只看該作者
Simple algebrasnd carrying no additional structure. All fields are understood to be commutative. All algebras are understood to have a unit, to be of finite dimension over their ground-field, and to be central over that field (an algebra . over . is called central if . is its center). If ., . are algebras over . w
33#
發(fā)表于 2025-3-27 06:10:56 | 只看該作者
Simple algebras over local fieldsinite and > 0. If . and . are such spaces, we write Hom(., .) for the space of homomorphisms of . into ., and let it operate on the right on .; in other words, if . is such a homomorphism, and . ∈ ., we write . for the image of . under .. We consider Hom(., .), in an obvious manner, as a vector-spac
34#
發(fā)表于 2025-3-27 11:26:32 | 只看該作者
Simple algebras over A-fieldscipally concerned with a simple algebra . over .; as stipulated in Chapter IX, it is always understood that . is central, i. e. that its center is ., and that it has a finite dimension over .; by corollary 3 of prop. 3, Chap. IX-1, this dimension can then be written as ., where . is an integer ≥ 1.
35#
發(fā)表于 2025-3-27 14:55:56 | 只看該作者
36#
發(fā)表于 2025-3-27 17:54:26 | 只看該作者
https://doi.org/10.1007/978-3-642-77247-4ates, one sees that all linear mappings of such spaces into one another are continuous; in particular, linear forms are continuous. Similarly, every injective linear mapping of such a space . into another is an isomorphism of . onto its image. As . is not compact, no subspace of . can be compact, except {0}.
37#
發(fā)表于 2025-3-27 22:15:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:39:23 | 只看該作者
0072-7830 y in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript b
39#
發(fā)表于 2025-3-28 08:05:22 | 只看該作者
Anita F. Meier,Andrea S. Laimbacherdimension ., and the number of its elements is . = .. If . is a subfield of a field . with . = . elements, . may also be regarded e.g. as a left vector-space over .; if its dimension as such is ., we have . = . and . = . = ..
40#
發(fā)表于 2025-3-28 12:07:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大冶市| 灵寿县| 绍兴市| 铁岭县| 高密市| 凤阳县| 平陆县| 丰顺县| 朝阳县| 岱山县| 西昌市| 合山市| 灯塔市| 刚察县| 兴安县| 乌苏市| 孟津县| 洛扎县| 双辽市| 望谟县| 克什克腾旗| 黄冈市| 宣武区| 永城市| 福贡县| 弥渡县| 专栏| 苏尼特左旗| 班玛县| 鄂伦春自治旗| 灵川县| 柘城县| 武隆县| 安龙县| 罗甸县| 黑水县| 康定县| 潢川县| 甘南县| 沁阳市| 荥阳市|