找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 1995Latest edition Springer-Verlag Berlin Heidelberg 1995 algebraic number field.algebraic number the

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 23:32:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:50 | 只看該作者
Simple algebrasnd carrying no additional structure. All fields are understood to be commutative. All algebras are understood to have a unit, to be of finite dimension over their ground-field, and to be central over that field (an algebra . over . is called central if . is its center). If ., . are algebras over . w
33#
發(fā)表于 2025-3-27 06:10:56 | 只看該作者
Simple algebras over local fieldsinite and > 0. If . and . are such spaces, we write Hom(., .) for the space of homomorphisms of . into ., and let it operate on the right on .; in other words, if . is such a homomorphism, and . ∈ ., we write . for the image of . under .. We consider Hom(., .), in an obvious manner, as a vector-spac
34#
發(fā)表于 2025-3-27 11:26:32 | 只看該作者
Simple algebras over A-fieldscipally concerned with a simple algebra . over .; as stipulated in Chapter IX, it is always understood that . is central, i. e. that its center is ., and that it has a finite dimension over .; by corollary 3 of prop. 3, Chap. IX-1, this dimension can then be written as ., where . is an integer ≥ 1.
35#
發(fā)表于 2025-3-27 14:55:56 | 只看該作者
36#
發(fā)表于 2025-3-27 17:54:26 | 只看該作者
https://doi.org/10.1007/978-3-642-77247-4ates, one sees that all linear mappings of such spaces into one another are continuous; in particular, linear forms are continuous. Similarly, every injective linear mapping of such a space . into another is an isomorphism of . onto its image. As . is not compact, no subspace of . can be compact, except {0}.
37#
發(fā)表于 2025-3-27 22:15:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:39:23 | 只看該作者
0072-7830 y in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript b
39#
發(fā)表于 2025-3-28 08:05:22 | 只看該作者
Anita F. Meier,Andrea S. Laimbacherdimension ., and the number of its elements is . = .. If . is a subfield of a field . with . = . elements, . may also be regarded e.g. as a left vector-space over .; if its dimension as such is ., we have . = . and . = . = ..
40#
發(fā)表于 2025-3-28 12:07:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 科尔| 赤壁市| 顺平县| 罗城| 富源县| 广安市| 西贡区| 罗山县| 朔州市| 休宁县| 包头市| 昭通市| 镇赉县| 桂林市| 温宿县| 丰镇市| 武城县| 城口县| 南郑县| 穆棱市| 衡山县| 塘沽区| 清流县| 衢州市| 东辽县| 阿克陶县| 观塘区| 醴陵市| 黑河市| 海城市| 乌海市| 武威市| 祁东县| 扬州市| 天水市| 孝昌县| 怀来县| 南城县| 湟中县| 普洱|