找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Linear Algebra; Thomas S. Blyth,Edmund F. Robertson Textbook 19981st edition Springer-Verlag London 1998 Eigenvalue.Eigenvector.Matr

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 11:48:43 | 只看該作者
https://doi.org/10.1007/978-3-642-79107-9In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
12#
發(fā)表于 2025-3-23 15:15:29 | 只看該作者
Sylvie Cabrit,Alex Raga,Frederic GuethIn Chapter 9 we introduced the notions of . and . of a matrix or of a linear mapping. There we concentrated our attention on showing the importance of these notions in solving particular problems. Here we shall take a closer algebraic look.
13#
發(fā)表于 2025-3-23 21:10:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:56 | 只看該作者
Some Applications of Matrices,We shall now give brief descriptions of some situations to which matrix theory finds a natural application, and some problems to which the solutions are determined by the algebra that we have developed. Some of these applications will be dealt with in greater detail in later chapters.
15#
發(fā)表于 2025-3-24 04:36:23 | 只看該作者
Systems of Linear Equations,We shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved:
16#
發(fā)表于 2025-3-24 10:24:41 | 只看該作者
Invertible Matrices,In Theorem 1.3 we showed that every . matrix . has an additive inverse, denoted by ?A, which is the unique . × . matrix . that satisfies the equation . + . = 0. We shall now consider the multiplicative analogue of this.
17#
發(fā)表于 2025-3-24 11:18:53 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Linear Mappings,In the study of any algebraic structure there are two concepts that are of paramount importance. The first is that of a . (i.e. a subset with the same type of structure), and the second is that of a . (i.e. a mapping from one structure to another of the same kind that is ‘structure-preserving’).
19#
發(fā)表于 2025-3-24 20:05:44 | 只看該作者
The Matrix Connection,We shall now proceed to show how a linear mapping from one finite-dimensional vector space to another can be represented by a matrix. For this purpose, we require the following notion.
20#
發(fā)表于 2025-3-25 01:08:39 | 只看該作者
Determinants,In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
墨竹工卡县| 黄石市| 浦县| 礼泉县| 隆回县| 应城市| 宜良县| 通化县| 普兰店市| 遵化市| 鹤庆县| 汤阴县| 阿坝| 青神县| 曲阜市| 吴川市| 无为县| 南岸区| 木里| 浦东新区| 勐海县| 额济纳旗| 遂溪县| 离岛区| 玉山县| 玛纳斯县| 罗源县| 营山县| 怀安县| 宿迁市| 新宁县| 沅陵县| 丹棱县| 韶山市| 天峨县| 务川| 阜康市| 乌拉特前旗| 崇礼县| 尼木县| 黄陵县|