找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Linear Algebra; Thomas S. Blyth,Edmund F. Robertson Textbook 19981st edition Springer-Verlag London 1998 Eigenvalue.Eigenvector.Matr

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 11:48:43 | 只看該作者
https://doi.org/10.1007/978-3-642-79107-9In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
12#
發(fā)表于 2025-3-23 15:15:29 | 只看該作者
Sylvie Cabrit,Alex Raga,Frederic GuethIn Chapter 9 we introduced the notions of . and . of a matrix or of a linear mapping. There we concentrated our attention on showing the importance of these notions in solving particular problems. Here we shall take a closer algebraic look.
13#
發(fā)表于 2025-3-23 21:10:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:56 | 只看該作者
Some Applications of Matrices,We shall now give brief descriptions of some situations to which matrix theory finds a natural application, and some problems to which the solutions are determined by the algebra that we have developed. Some of these applications will be dealt with in greater detail in later chapters.
15#
發(fā)表于 2025-3-24 04:36:23 | 只看該作者
Systems of Linear Equations,We shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved:
16#
發(fā)表于 2025-3-24 10:24:41 | 只看該作者
Invertible Matrices,In Theorem 1.3 we showed that every . matrix . has an additive inverse, denoted by ?A, which is the unique . × . matrix . that satisfies the equation . + . = 0. We shall now consider the multiplicative analogue of this.
17#
發(fā)表于 2025-3-24 11:18:53 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Linear Mappings,In the study of any algebraic structure there are two concepts that are of paramount importance. The first is that of a . (i.e. a subset with the same type of structure), and the second is that of a . (i.e. a mapping from one structure to another of the same kind that is ‘structure-preserving’).
19#
發(fā)表于 2025-3-24 20:05:44 | 只看該作者
The Matrix Connection,We shall now proceed to show how a linear mapping from one finite-dimensional vector space to another can be represented by a matrix. For this purpose, we require the following notion.
20#
發(fā)表于 2025-3-25 01:08:39 | 只看該作者
Determinants,In what follows it will be convenient to write an . × . matrix A in the form . where, as before, .., represents the .-th column of .. Also, the letter . will signify either the field ?; of real numbers or the field ? of complex numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
将乐县| 保定市| 珠海市| 根河市| 巨鹿县| 棋牌| 利川市| 上饶县| 陇西县| 峨眉山市| 宣恩县| 宁津县| 光泽县| 成安县| 县级市| 平舆县| 元江| 闵行区| 多伦县| 安泽县| 璧山县| 北碚区| 顺昌县| 文水县| 邵阳县| 白水县| 兴城市| 温州市| 永和县| 沂水县| 察雅县| 仁寿县| 江源县| 乐业县| 邯郸市| 夹江县| 浙江省| 修文县| 昭觉县| 扎赉特旗| 绥江县|