找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Homological Algebra; M. Scott Osborne Textbook 2000 Springer Science+Business Media New York 2000 Adjoint functor.Homological algeb

[復制鏈接]
樓主: HARDY
21#
發(fā)表于 2025-3-25 04:53:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:22 | 只看該作者
Martin Goodman MD,David A. Geller MDIn what follows, .. We shall use the following notation, with . (or .) being a ring:
23#
發(fā)表于 2025-3-25 14:57:53 | 只看該作者
24#
發(fā)表于 2025-3-25 16:16:53 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:34 | 只看該作者
Michele Valiante,Paola GrammaticoA close look at much of the earlier material, especially in the last chapter, reveals the strong connection between projectives and injectives. The idea is this: Formulate your result purely in terms of arrows (morphisms), then reverse them. That is, work in the opposite category. Not everything can be done this way, but a surprising amount can.
26#
發(fā)表于 2025-3-26 03:01:41 | 只看該作者
Pathology of Hepatocellular CarcinomaThis section uses material from Chapters 1 and 2.
27#
發(fā)表于 2025-3-26 07:37:39 | 只看該作者
Categories,Homological algebra addresses questions that appear naturally in category theory, so category theory is a good starting point. Most of what follows is standard, but there are a few slippery points.
28#
發(fā)表于 2025-3-26 10:39:34 | 只看該作者
29#
發(fā)表于 2025-3-26 13:53:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:50:23 | 只看該作者
Derived Functors,The purpose of this chapter and the next is to generalize the earlier constructions of Ext and Tor. In this chapter, functors beyond Horn and ? will be applied to projective (and injective) resolutions in .. In the next chapter, these constructions will be carried out in more general categories.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 23:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡阳市| 靖江市| 剑川县| 黔东| 天全县| 集安市| 财经| 鹿泉市| 宁国市| 遂平县| 将乐县| 沅江市| 钦州市| 乐业县| 哈密市| 夏河县| 阜康市| 亳州市| 新绛县| 东乡县| 乌拉特中旗| 吴桥县| 离岛区| 海晏县| 卓资县| 阳泉市| 阳新县| 城口县| 嘉善县| 兴义市| 丽水市| 吉木萨尔县| 永嘉县| 博湖县| 敖汉旗| 焉耆| 江华| 吴江市| 临湘市| 东兰县| 武城县|