找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Graph Theory; Md. Saidur Rahman Textbook 2017 Springer Nature Switzerland AG 2017 graph theory.planar graphs.graph colouring.matchin

[復(fù)制鏈接]
樓主: arouse
11#
發(fā)表于 2025-3-23 10:58:33 | 只看該作者
Allison E. Roder,Stacy M. HornerA . is a connected graph that contains no cycle. In this chapter we know some properties of trees which are useful for solving computational problems on trees.
12#
發(fā)表于 2025-3-23 16:10:29 | 只看該作者
13#
發(fā)表于 2025-3-23 19:39:05 | 只看該作者
https://doi.org/10.1007/978-1-4939-8976-8A graph is . if it can be drawn or embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. In this chapter we study planar graphs.
14#
發(fā)表于 2025-3-23 23:03:40 | 只看該作者
Emerging Antivirals in the Future,A graph is usually called a directed graph or a digraph if its edges have directions. The concept of directed graphs has many applications in solving real-world problems. In this chapter we study some properties of digraphs.
15#
發(fā)表于 2025-3-24 05:53:22 | 只看該作者
Patrizia Burra MD, PhD,Stefano Fagiuoli MDIn this chapter, we know about some special classes of graphs. Special classes of graphs play important roles in graph algorithmic studies. When we find a computationally hard problem for general graphs, we try to solve those problems for special classes of graphs.
16#
發(fā)表于 2025-3-24 08:33:47 | 只看該作者
17#
發(fā)表于 2025-3-24 13:17:11 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:41 | 只看該作者
Trees,A . is a connected graph that contains no cycle. In this chapter we know some properties of trees which are useful for solving computational problems on trees.
19#
發(fā)表于 2025-3-24 20:40:58 | 只看該作者
20#
發(fā)表于 2025-3-25 03:09:10 | 只看該作者
Planar Graphs,A graph is . if it can be drawn or embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. In this chapter we study planar graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 西平县| 富川| 青冈县| 茂名市| 伽师县| 舟曲县| 城固县| 四会市| 娱乐| 库车县| 揭西县| 当涂县| 长阳| 牟定县| 开平市| 浮梁县| 沙湾县| 湘阴县| 上犹县| 张北县| 左贡县| 长乐市| 离岛区| 泉州市| 宁河县| 广水市| 隆尧县| 南陵县| 简阳市| 酉阳| 民乐县| 兴安盟| 卢氏县| 屏边| 荣成市| 会理县| 台南县| 珠海市| 桃园县| 宝清县|