找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic ergodic theory; M. G. Nadkarni Book 2013Latest edition Hindustan Book Agency (India) 2013

[復制鏈接]
樓主: abandon
31#
發(fā)表于 2025-3-26 23:11:03 | 只看該作者
Additional Topics,Liouville’s theorem has its origin in classical mechanics. In its simplified version it gives a necessary and sufficient condition for a flow of homeomor-phisms on an open subset in ?. to be volume preserving. Following K. R. Parthasarathy [8] we give this version first, followed by a discussion of its version in classical mechanics.
32#
發(fā)表于 2025-3-27 03:41:13 | 只看該作者
33#
發(fā)表于 2025-3-27 07:29:07 | 只看該作者
Hindustan Book Agency (India) 2013
34#
發(fā)表于 2025-3-27 11:57:49 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:43 | 只看該作者
36#
發(fā)表于 2025-3-27 18:46:41 | 只看該作者
,H. Dye’s Theorem, admit Borel cross-sections. We will therefore assume in the rest of this chapter that . and . are free and their orbit spaces do not admit Borel cross-sections. The first important result on orbit equivalence was obtained by H. Dye [2] and the main aim of this chapter is to prove his theorem.
37#
發(fā)表于 2025-3-28 01:25:08 | 只看該作者
38#
發(fā)表于 2025-3-28 03:17:06 | 只看該作者
39#
發(fā)表于 2025-3-28 09:28:15 | 只看該作者
Bernoulli Shift and Related Concepts,hift and the related concept of .-automorphism at an elementary level. Bernoulli shifts provide us with examples of mixing measure preserving automorphisms. The discussion here follows closely the exposition in Patrick Billingsley [1].
40#
發(fā)表于 2025-3-28 11:18:29 | 只看該作者
Discrete Spectrum Theorem,ivalent. Let us say that . and . are spectrally isomorphic if . and . are unitarily equivalent. If . and . are spectrally isomorphic and . is ergodic then . is ergodic, because . is ergodic if and only if 1 is a simple eigenvalue of . hence also of ., which in turn implies the ergodicity of .. Simil
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 06:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
成都市| 龙泉市| 庆城县| 博罗县| 阿瓦提县| 金乡县| 屯昌县| 玉环县| 彰化市| 新源县| 定南县| 沿河| 孝昌县| 南乐县| 和田县| 宾阳县| 泾源县| 肥东县| 富宁县| 泗洪县| 米林县| 介休市| 麻阳| 柳林县| 皮山县| 北川| 扎囊县| 阿荣旗| 利川市| 乐昌市| 柯坪县| 兴安盟| 吴忠市| 哈巴河县| 建瓯市| 石门县| 龙州县| 迁安市| 阜宁县| 建平县| 高邑县|